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Abstract

We study adverse selection in annuity and long-term care (LTC) insurance markets
and potential gains from a combination of insurances. Using unique administrative
data from the Netherlands, we find opposing socioeconomic gradients in mortality
and LTC which strongly differ over gender and informal care possibilities. These
heterogeneous risks imply adverse selection for single annuity-, and LTC insurances.
We theoretically and empirically derive conditions for an optimal combination of
insurances minimizing adverse selection. Our results indicate that despite reverse
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1 Introduction

Within the context of aging societies, the proper design of old-age insurance systems be-

comes increasingly salient. In private markets, a strong tendency to underinsure longevity

risk and the risk of needing long-term care (LTC) has been empirically observed, often

referred to as the annuity puzzle and LTC insurance puzzle, see Lambregts and Schut

(2020) for a review. Adverse selection is one explanation for the limited market sizes,

arising when those with above-average life expectancy more often buy annuities, and

those with high expected long-term care needs more often buy LTC insurance.1 Another

explanation for the low demand for LTC insurance is the availability of informal care from

the spouse or other family members (Mommaerts, 2023). To reduce adverse selection in-

centives, combining insurances to hedge long-term care- and mortality risks when they

are negatively correlated has been proposed.2 Despite its theoretical potential, old-age

insurances that combine LTC insurance with annuities are still not very common, and its

feasibility is poorly understood.3

This paper quantifies socioeconomic and socio-demographic differences in long-term

care use and mortality and evaluates the implications for combined insurance against

these risks. We theoretically derive conditions for a combined insurance that minimizes

adverse selection incentives. We then quantify differences in long-term care use and

mortality over lifetime income employing a multi-state model using unique Dutch admin-

istrative data of over 3 million individuals aged 65 and above. Using these results we

evaluate the factors that are important for a combined life care annuity.

The point of departure for our study is the well-known socioeconomic gradient in

longevity, according to which individuals with lower income die earlier than those with

high incomes, cf. Deaton (2002). For long-term care use, low income individuals tend

to be less healthy at older ages and require more LTC. Both of these socioeconomic
1cf. Finkelstein and Poterba (2004). However, the size of adverse selection problems in the LTC

insurance market is subject to debates, cf. Brown and Finkelstein (2007), Brown and Finkelstein (2008),
and Boyer et al. (2020), among others. Most notably, preference heterogeneity – low risks have a high
preference for insurance – might even imply advantageous selection, cf. Finkelstein and McGarry (2006).
We assume homogeneous preferences in this paper and take the positive correlation of private information
and insurance coverage as given.

2Murtaugh et al. (2001), Brown and Warshawsky (2013), Webb (2009), Solomon (2022),De Donder
et al. (2022).

3The American Association for Long-Term Care Insurance highlights the favorable experience
with LTC combination products over stand-alone LTC insurance; however, the number of policies
sold remains limited, see: https://www.aaltci.org/long-term-care-insurance/learning-center/
ltcfacts-2019.php and https://www.aaltci.org/linked-benefit-faqs/.

1

https://www.aaltci.org/long-term-care-insurance/learning-center/ltcfacts-2019.php
https://www.aaltci.org/long-term-care-insurance/learning-center/ltcfacts-2019.php
https://www.aaltci.org/linked-benefit-faqs/


gradients are significantly affected by gender and marital status. Importantly, the socioe-

conomic gradients and its heterogeneity greatly matter for the design of insurances. The

implications apply to both private and public insurance systems.

For public social security, socioeconomic differences in mortality imply a redistribution

of benefits from lower incomes, who die early, to higher incomes, who receive benefits for

a more extended retirement period.4 In private insurance markets, the implied differences

in premium returns followed by inequalities in mortality can yield adverse selection prob-

lems. Pricing at average life expectancy would imply an actuarially unfair premium for

higher income individuals, contributing to under-annuitization (Brown and Finkelstein,

2008). The picture is reversed for LTC insurance. Here, individuals with lower income

tend to require more long-term care. This gradient imposes an opposite redistribution of

benefits via LTC insurance from higher to lower income individuals in public insurance

systems. In a private insurance market, medical underwriting and potentially low take-up

rates of private LTC insurance might be the consequence (Braun et al., 2019). The nega-

tive correlation between longevity and long-term care needs implies that individuals with

lower incomes are seen as lower risk types in the annuity market and higher risk types in

the LTC insurance market, with the opposite for high income individuals. From a private

insurance perspective, combining the two insurances to hedge these risks is appealing to

reduce adverse selection problems.

In our study, to understand the implications of socioeconomic and socio-demographic

differences in long-term care use and mortality for combined old-age insurance, we ex-

tend the standard adverse selection model by Einav et al. (2010). We formally derive an

optimal combination of LTC insurance and pension annuity that minimizes adverse se-

lection. More specifically, we obtain an expression showing how the optimal combination

of insurance depends on three factors: (1) the mean duration in each of the two states

‘no-long-term care use’ and ‘long-term care use’, (2) the variances of money’s worth for

stand-alone LTC and annuity insurance over individual types, and (3) the correlation

between the money’s worth of the two insurances.

Next, we establish stylized facts on the socioeconomic gradients in longevity and LTC.
4For the US social security system, Groneck and Wallenius (2021) show that the (intended) progres-

sivity turns regressive once the differences in life expectancy over socioeconomic status are considered.
In a companion paper (van der Vaart et al., 2021), we quantify the welfare effects of social insurance
programs stemming from inequalities in long-term care needs and mortality in a dynamic structural
model.
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We estimate the joint distribution of long-term care use and remaining life expectancy

at age 65 by lifetime income, gender, and marital status. Exploiting rich administra-

tive data provides us with sufficient observations also for the oldest-old, which is crucial

for reliably estimating long-term care incidences. We develop a multi-state model and

employ a recently developed method to estimate the underlying mixed proportional haz-

ard rates (van der Vaart and van den Berg, 2023), incorporating frailty and allowing for

time-varying covariates to capture the transition from being married to a single-person

household.

We study the impact of these estimates for the design of insurances. We quantify

adverse selection incentives for stand-alone pension annuity and LTC insurance measured

as any deviation of the individual risk from actuarial fair pricing (i.e., non-zero premium

returns). We then analyze the optimal combination of the insurances that minimizes

adverse selection stemming from socioeconomic and socio-demographic inequalities. Our

results allow us to understand the feasibility of combined old-age insurance for different

socioeconomic groups and its determinants.

We have two main contributions. First, we establish new stylized facts simultaneously

documenting a positive gradient in longevity and a negative gradient in long-term care use

over lifetime income. We highlight to what extend informal care possibilities – proxied by

having a spouse – affect these differences. Previous literature has studied this in isolation

and focused on formal care only (cf. Kalwij et al. (2013) and Rodrigues et al. (2018),

for example). Second, we theoretically and empirically study the optimal combination of

insurances by determining the optimal specific benefit level for each future state of the

world. Two additional factors – the relative duration and the heterogeneity in risks –

are shown to be important for a combination of insurances, next to the the well-known

negative correlation of risks. We further emphasize the need for group-specific premia to

reduce adverse selection problems. Previous literature studied given insurance products

(e.g. Murtaugh et al. (2001)) and focused on the negative correlation between risks as

the precondition for a successful combination, cf. Webb (2009), Solomon (2022).

We find substantial socioeconomic inequalities in long-term care use and mortality.

The difference in remaining life expectancy at age 65 between the bottom and the top

lifetime income quintile is 4.0 years for men and 2.3 years for women. Women in the

bottom income quintile spend an additional 1.7 years in long-term care after age 65 than
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those in the top income quintile, while for men, this difference is 1.1 years. Hence, gender

matters for the income gradient, which is stronger for men in terms of mortality, but

stronger for women in terms of long-term care. Regarding informal care possibilities,

proxied by having a spouse, being married reduces long-term care duration by 22% for

men and it substantially flattens the socioeconomic gradient. At the same time, this is

far less pronounced for women, potentially due to the high likelihood of outliving the

spouse.

The implied consequences for valuing insurances show for LTC insurance a large

positive premium return of +30 percent for the lowest income quintile and a negative

premium return of –17% for the highest income. The gradient of the premium returns

for annuities is reversed but flatter and ranges from –9% to +4% for the lowest and the

highest income quintile.

Guided by our theory we determine the optimal combination of annuity and LTC

insurance. Combining both insurances reveals that this is unfeasible with a uniform

premium for everyone due to large gender-differences in long-term care use and mortality

and a positive correlation of premium returns over gender. Group-specific premia yield

large differences for the optimal insurance products over gender and marital status. Our

results suggest that a life care annuity seems feasible for single men and women but less

so for married men and women, due to unfavorable variances and correlations of the risks

for these groups.

Our analysis is not limited to a combination of annuities and LTC insurance but

holds more general for any bundling of insurances. Bundling risks in insurances is a

widespread practice ranging from life-insurance with LTC-rider to home-car insurances,

see Eling and Ghavibazoo (2019) and Solomon (2022) for further examples of combining

insurances. Our results can help guiding the design of such bundled insurance products

and inform about its feasibility to reduce adverse selection problems.

The remainder of the paper proceeds as follows. The following Section 2 gives a

brief literature review. Section 3 presents the theoretical model and Section 4 describes

institutional details, the data, and the empirical approach. Section 5 presents the results,

Section 6 discusses the main results and Section 7 concludes.
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2 Literature

Our paper combines three related strands of literature studying (1) the causes of the

annuity- and LTC insurance puzzles, (2) the potential to bundle insurances, and (3)

the estimation of socioeconomic and socio-demographic differences in long-term care and

mortality.

Our paper focuses on adverse selection and informal care possibilities as two factors

affecting the low demand for annuities and LTC insurance. However, many other expla-

nations for the so-called annuity- and LTC insurance puzzle have been put forward. Most

notably, the risk for high out-of-pocket expenses for health-related expenses and bequest

motives imply a tendency to hold sufficient liquid assets to prevent hitting the borrowing

constraint, which implies low annuitization, cf. Lockwood (2018), Ameriks et al. (2018).

Davidoff (2009) point to the importance of home equity, which can serve as a substitute

for annuities and LTC insurance to some extent. Reichling and Smetters (2015) empha-

size the role of correlated risks introduced via health shocks that simultaneously affect

longevity and uninsured medical costs as a source for low valuation of annuitization.

Pauly (1990) and Zweifel and Strüwe (1998), and more recently, Mommaerts (2023) and

Coe et al. (2015) stress the importance of informal care availability for the low demand

for private LTC insurance.

Most related to our approach are studies evaluating loads or the money’s worth of

insurance, which we will also apply in our analysis to evaluate adverse selection problems.

Brown and Finkelstein (2007) find significant loads in the long-term care insurance mar-

ket pointing to actuarial unfair pricing which varies by demographic and socioeconomic

characteristics. Brown and Finkelstein (2008) determine large differences in the will-

ingness to pay for insurance in a life-cycle setting given the current government welfare

system between insurances with these loads or without. Similarly, Mitchell et al. (1999)

estimate the willingness to pay for actuarially fair pricing in the annuity market using a

money’s worth concept.

Theoretically, the extension of the standard adverse selection model to multiple risks

to compare separate versus ’umbrella’ contracts has been studied by Fluet and Pannequin

(1997) focusing on the relationship between partial coverage and low-risk exposure un-

der multiple risks, Gollier and Schlesinger (1995) analyzing the optimal structure of de-

ductibles , and Picard (2020) studying optimal risk splitting in multidimensional screening
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models. Webb (2009) and Solomon (2022) investigate life care annuities directly. Webb

(2009) sets up an adverse selection model in the presence of preference heterogeneity and

unfair pricing, showing that the bundled product can be welfare-improving. Closely re-

lated to our theoretical model is Solomon (2022), who shows that the correlation structure

and whether selection is adverse or advantageous are the key elements for the welfare ef-

fects of bundling. Solomon (2022) does not analyze an optimal combination of insurances,

though.

Murtaugh et al. (2001) and Brown and Warshawsky (2013) have empirically studied

the attractiveness of life care annuities relative to single products by determining how

a combined product can be offered with a lower premium and less strict medical under-

writing to attract more people. De Donder et al. (2022) show that bundling in a life care

annuity can yield advantageous selection solely assuming differences in agent’s risks.

Our paper also relates to the literature studying socioeconomic differences in mortal-

ity and long-term care. Pijoan-Mas and Ŕıos-Rull (2014) provide age-specific estimates

for the negative relationship between mortality and socioeconomic status. Kalwij et al.

(2013) also estimate longevity differences over income and gender using Dutch adminis-

trative data and report similar results to what we find. Similarly, a negative relationship

between long-term care needs and long-term care use and socioeconomic status has been

documented (Ilinca et al., 2017; Rodrigues et al., 2018; Garcia-Gomez et al., 2019; Ten-

and et al., 2020). These findings align with the well-documented gender-health paradox,

stating that women indeed do live longer but tend to be less healthy (Case and Paxson,

2005; Oksuzyan et al., 2008).

3 Adverse selection model with multiple risks

We extend the model of Einav et al. (2010) to describe how adverse selection for a stylized

stand-alone annuity and LTC insurance can be reduced by a combined life care annuity

and show that this insurance is welfare-increasing.5 A precondition for this to work is a

negative correlation between long-term care- and survival risk. We then use this simple

framework to derive an optimal combination of the two insurances, allowing us to single

out its determining components. We focus on comparing a world with single insurances
5See also Einav and Finkelstein (2023), the ’self-indulgent’ survey describing the recent studies using

the Einav-model.
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to a world of a bundled product, which enables us to derive an optimal bundling in

the sense that adverse selection problems are minimized. We abstract from multiple

important aspects – such as screening, partial insurance, and the choice between stand-

alone and bundled insurance – so that our simple model allows us to focus on optimally

combining the two insurances and study the drivers of the optimal combination.

Suppose there is a continuum of individual types ξ ∈ Ξ with distribution G(ξ) who

live for two periods. They differ by their probabilities of survival s(ξ) and probability

q(ξ) to become in need of long-term care associated with costs of X. The probabilities are

private information. Individuals receive utility U from consumption and are risk-averse

with with U ′ > 0, U ′′ < 0 . Lifetime utility6 is:

V = U(C1) + s(ξ) ·
{
{1 − q(ξ)} · U(Ch

2 ) + q(ξ) · U(C l
2)
}

= U(C1) + {s(ξ) − l(ξ)} · U(Ch
2 ) + l(ξ) · U(C l

2), (1)

where Ch
2 is consumption when healthy and C l

2 is consumption when in need of long-term

care at date t = 2, and l(ξ) = s(ξ) · q(ξ) is the unconditional probability of becoming in

need of long-term care. In line with our later empirical results, we assume that individual

types that live longer spend shorter time in long-term care, so that Corr(s(ξ), l(ξ)) < 0.

3.1 Stand-alone Annuity and LTC insurance

We first study two stand-alone contracts k = {A, L} of an annuity A and a LTC insurance

L. Individuals have initial wealth Wt in both periods t = 1, 2 where W1 > W2. In period

1 the agent can buy annuity insurance at premium PA paying a benefit Υ in t = 2 in

case of survival, and LTC insurance at premium PL that covers long-term care costs X

in the event of poor health at old age. Hence, the benefit is B = {Υ, X} under each

insurance. There are no savings in the model so the budget constraint in period 1 is

given by C1 = W1 − PA − PL. In period 2, the agent can consume W2 + Υ in both states

if insured. If uninsured, the agent has Ch
2 = W2 if surviving healthy and C l

2 = W2 − X if

surviving in need of long-term care.

Rational individuals make a binary choice to buy insurance or stay uninsured, taking
6Note, we assume homogeneous preferences implying that the only heterogeneity between households

are the two risks.
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the other insurance as given.7 Comparing the expected utility from being insured with

the value from staying uninsured, we can derive the willingness to pay π(ξ, k) (WTP)

for an insurance for each type. With this, define aggregate demand Dk(Pk) for insurance

k as the mass of types whose willingness to pay exceeds the uniform price Pk for the

insurance product:8

Dk(Pk) =
∫

Ξ
1(π(ξ, k) ≥ Pk)dG(ξ). (2)

Risk-neutral insurers have to cover only the costs c(ξ, k) for each insured individual

and compete in a Bertrand game over the price of the product. Firms cannot observe

individual risk and have to price insurance based on an average risk type and cost ACk.9

The distinguishing feature of the adverse selection model relative to the standard sup-

ply and demand model is that supply is not determined with an independent production

technology. Instead, the average cost curve –the supply curve– ACk is given by

ACk(Pk) = 1
Dk(Pk)

∫
Ξ

c(ξ, k) · 1(π(ξ, k) ≥ Pk)dG(ξ) = E {c(ξ, k)|π(ξ, k) ≥ Pk} , (3)

which is determined by the types who choose to buy insurance.

The marginal cost curve in the market is given by MCk(Pk) = E {c(ξ, k)|π(ξ, k) = Pk},

and it is downward sloping so that marginal costs increase in price and decrease in

quantity. This shape is generated by the fact that individuals with the highest willingness

to pay for insurance are also those with the highest expected costs, but the type ξ is

private information. Further, due to agents being risk-averse, the marginal cost curve

locates below the demand curve.

Zero profit implies that the equilibrium insurance premium equals the average costs

of the entire risk pool willing to buy the insurance at the given premium, so the firms’

information problem implies welfare losses relative to a world with complete information.

Panel (a) in Figure 1 provides a stylized graphical representation of the welfare losses
7When studying one insurance, we assume that the respective other risk is fully insured so that

we only have two groups: insured and uninsured agents. Solomon (2022) provides an extension where
agents can decide to buy either insurance, both insurances or to stay uninsured. The main results are
not affected by our simplifying assumption.

8See Appendix C for the derivation of the demand- and WTP-curve for our two period model and
accompanying comparative statics on the slope of the demand curve.

9Besides this adverse selection, we abstract from any other friction like, e.g., moral hazard. Firms are
also not allowed to compete on the coverage features as in Rothschild and Stiglitz (1976) type models.
Webb (2009) explicitly shows in this setup that bundling an annuity and a LTC insurance with negatively
correlated risks for these states is a Pareto improvement.
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in a market for the stand-alone insurances.10 In our example, the WTP curve is always

above the MC curve due to the assumed risk-aversion, implying that agents always prefer

being insured when pricing is at marginal costs. Due to asymmetric information, pricing

occurs at average costs. Hence, the equilibrium price is in point B, where the willingness

to pay of a new –lower-cost– individual no longer exceeds the average cost of the existing

insurance pool. It is optimal for the marginal consumer to remain uninsured. The welfare

loss due to asymmetric information is the deadweight loss ABCD, which equals the sum

of risk premia of uninsured individuals who are willing to pay a positive risk premium.

Figure 1: Adverse selection effects with different cost patterns

(a) Heterogeneous expected cost
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(b) Homogeneous expected cost
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The slope of the WTP curve is determined by the dispersion of types in the economy:

a high willingness to pay for insurance implies a high underlying risk and vice versa. What

happens if the heterogeneity in risk decreases? A lower dispersion in costs, V ar(c(ξ, k)),

flattens the WTP-, and the two cost curves. The willingness to pay across agents, as

well as their costs, become more aligned. In effect, more agents would be insured (point

B would move to the right), and the dead weight loss would decrease. Panel (b) Figure

1 depicts the extreme case without dispersion, V ar(c(ξ, k)) = 0. With all individuals

facing the same expected costs the demand- and supply curves become linear. Average

costs are equal to marginal costs but below the WTP-curve due to the risk premium that
10We depict linear demand and supply curves which arise if the probabilities are uniformly distributed,

which is assumed for the following analysis. Non-linearities, in contrast, arise from normally distributed
probabilities.
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agents are willing to pay. In that case, the first-best optimum of full insurance in point

A = B is possible for every risk-averse individual because asymmetric information no

longer plays a role.

Of course, assuming risk-averse agents implies that agents would buy insurance even

with a negative return on the insurance due to a positive risk premium that they are

willing to pay. This means that the first best allocation is already achieved in this model

before adverse selection is completely eliminated. In fact, reducing V ar(c(ξ, k)) to the

point where the WTP curve is above the AC-curve for all agents in Panel (a) of Figure 1 is

enough to ensure full insurance. When studying an optimal comination of insurances, we

will use the objective to minimize the variance in costs to get results that are independent

of household preferences to simplify the analysis.

3.2 Optimal Combined Insurance

The Life Care Annuity In a combined insurance product, the life care annuity CA,

agents can pay the premium PCA that pays out the annuity Υ if the agent survives with

probability s(ξ)− l(ξ) and is healthy, and the payout is (1+ρ)Υ if the agent survives but

needs long-term care with probability l(ξ).11 The general idea is to hedge the two risks

when Corr(s(ξ), l(ξ)) < 0 to attract a higher number of people choosing this insurance.

Assume an individual with a high risk for annuities (high life expectancy), implying high

costs, and simultaneously with a low risk of long-term care, implying low cost for LTC

insurance. A second agent has low life expectancy and high long-term care risk, implying

the reversed costs for the two insurances. The variation in the cost, V ar(c(ξ, k)) ̸= 0,

implies adverse selection problems for stand-alone products. However, combining the

two insurances hedges the risks and aligns the costs of these two agents. In the optimal

outcome, the costs of the agents are equal, i.e., c(ξ, k) = c and V ar(c(ξ, k)) = 0, which

eliminates the adverse selection problem and makes the first best allocation feasible in

our simple model so that everyone is insured, cf. Figure 1(b).

Optimal Combination of Insurance We aim to determine a contract of a combined

insurance that maximizes the fraction of insured agents by minimizing adverse selection.
11We assume that stand-alone insurance is unavailable when studying combined insurance. This could

be labeled as the ’managed competition’ case – cf. Solomon (2022) – where a regulator, or market
designer does not allow single insurance contracts.
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This can be achieved by the appropriate choice of ρ, which governs the relative size of the

benefit in each state. Note that the benefit in case of LTC is then no longer restricted

to be capped by the long-term care costs X, but we rather allow for arbitrary top-up

values ρ, which might exceed the costs. The optimal size of the top-up ρ that minimizes

adverse selection in this model is reached if expected individuals’ cost are homogeneous

for all types ξ:

E (c(ξ, CA, ρ)) − c = 0. (4)

Consider a simple example with only two types ξ = (1, 2). To equalize benefits, the

benefit level ρ needs to be chosen such that condition (4) is met for both types, implying

that their costs are equal:12

c(1, CA, ρ) = c(2, CA, ρ) =⇒ s(1) · Υ + l(1) · ρ · Υ = s(2) · Υ + l(2) · ρ · Υ,

Solving for ρ gives:

ρ = s(2) − s(1)
l(1) − l(2) .

Obviously, ρ > 0 if s(2) > s(1) and l(1) > l(2), or vice versa: the time in long-term

care l(ξ) and remaining life expectancy s(ξ) have to be negatively correlated to sustain

a positive LTC insurance benefit.

If there are infinitely many types, there is no closed-solution possible, and we have to

bring the average cost c as close as possible to individual expected cost. We do this by

minimizing the squared difference of (4):13,14

min
ρ

F(ρ) = E
{

s(ξ) + l(ξ) · ρ

E(s(ξ)) + E(l(ξ)) · ρ
− 1

}2

= E
{
PR (ξ, ρ)2

}
= V ar {PR(ξ, ρ)}

with

PR(ξ, ρ) = s(ξ) + l(ξ) · ρ

E(s(ξ)) + E(l(ξ)) · ρ
− 1 (5)

In the multi-period framework, s(ξ) represents the remaining life expectancy and l(ξ),

the unconditional remaining lifetime spent with long-term care needs. PR in Equation (5)
12See Appendix C for comparative static on how the slope of the demand curve changes if the corre-

lation between s(ξ) and l(ξ) becomes more negative.
13Without affecting our main results, we divided the objective function by c so that we can express it

in terms of premium returns to get a better intuition for the results.
14We here assume a real interest rate of zero so that the time value of money does not play a role in

the model.
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is the premium return of the life care annuity, defined as the difference between the ratio

of expected (present) value of benefits relative to its premium. An analogous concept

of money’s worth was suggested by Mitchell et al. (1999) and used by, e.g. Finkelstein

and Poterba (2004) and Brown and Finkelstein (2007).15 In the model discussed above,

the expected value of benefits for each type is s(ξ) + l(ξ) · ρ. The uniform premium in

a competitive market is given by PCA = E(s(ξ)) + E(l(ξ)) · ρ which is the denominator

of Equation (5). A value of unity implies a premium return of zero: the pricing of the

insurance is then actuarial fair with premia equal to the expected value of benefits. Our

objective function aims to minimize the variance in premium returns, implying as little

heterogeneity in marginal cost as possible. It is important to note that our objective is

to minimize welfare loss due to adverse selection. We leave the explicit modeling of the

choice of different insurance contracts for future research.

Deriving the first-order condition from the optimization problem (5) and solving for

the optimal top-up ρ yields our main result16

ρ⋆ = E(s(ξ))
E(l(ξ)) ·

{
SD{ s(ξ)

E(s(ξ))}
SD{ l(ξ)

E(l(ξ))}

}
−Corr{ s(ξ)

E(s(ξ)) ,
l(ξ)

E(l(ξ))}

SD{ s(ξ)
E(s(ξ))}

SD{ l(ξ)
E(l(ξ))}

−1

−Corr{ s(ξ)
E(s(ξ)) ,

l(ξ)
E(l(ξ))}

, (6)

where s(ξ)
E(s(ξ)) and l(ξ)

E(l(ξ)) can be interpreted as the money’s worth of the stand-alone

insurances, i.e. one plus the premium return, for the stand-alone annuity-, and LTC

insurance, respectively. The optimal size of benefit in long-term care relative to not in

long-term care, ρ⋆, depends on three main elements: (1) the relative duration in each

state, E(s(ξ))
E(l(ξ)) , (2) the relative standard deviations of the money’s worth for stand-alone

LTC- and annuity insurance, SD{ s(ξ)
E(s(ξ))}

SD{ l(ξ)
E(l(ξ))}

, and (3) the correlation of the money’s worth of

the two stand-alone insurances, Corr
{

s(ξ)
E(s(ξ)) ,

l(ξ)
E(l(ξ))

}
.

The relative duration in each state, i.e., the expected life expectancy relative to the

expected duration in need of long-term care, has a proportional impact on ρ∗. Assuming

the relative standard deviations to be one and a perfectly negative correlation, the in-

tuition is straightforward. Let life expectancy be two times higher than the time spend
15The money’s worth used by Finkelstein and Poterba (2004) is defined as the expected present dis-

counted value of annuity payouts divided by the initial premium. In our terminology, this could be
defined as the premium return plus one, equal to one if the benefits align with the premium.

16Appendix D provides the derivation.
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in need of long-term care so that E(s(ξ))
E(l(ξ)) = 2, then the level effect of optimal condition

(6) implies that the top-up of LTC benefits must also be twice as high compared to the

state when not in need of long-term care (ρ∗ = 2) to eliminate the differences in premium

returns.

The second factor is a measure for the heterogeneity in risks and can be interpreted as

the heterogeneity in the money’s worth in each stand-alone insurance. In effect, this mea-

sure is an indication which of the two insurances suffer from more severe adverse selection

problems. In Section 3 we showed that decreasing heterogeneity in types also decreases

the deadweight loss. A value above one implies that the heterogeneity in premium returns

is larger for an annuity whereas this is reversed if this ratio is smaller one. The impact

of this factor on the optimal combination of the two insurances is again straightforward.

Assuming a relative duration of 1 and again a perfectly negative correlation, we also have

a proportional effect on ρ∗. If the heterogeneity in premium returns is twice as large

when in need of long-term care so that SD{ s(ξ)
E(s(ξ))}

SD{ l(ξ)
E(l(ξ))}

= 0.5, then the implied top-up is given

by ρ∗ = 0.5. The intuition is that the optimal combination of the two insurances implies

that a higher benefit should be granted in the state where heterogeneity in risks is lower.

Finally, note, that taken both factors together assuming a perfectly negative correlation

simply consist of the product of the two:

ρ∗
Corr=−1 = E(s(ξ))

E(l(ξ)) ·
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} . (7)

This equation shows that the two factors can offset each other: following the example

above, if there is more heterogeneity in long-term care risk but the duration is shorter

than surviving healthy, then it might be optimal to combine an annuity and a LTC

insurance and pay out the same benefit in both states, i.e., ρ∗ = 2 · 0.5 = 1.0.

The third factor measures the correlation between the money’s worth of the two

stand-alone insurances. When the risks – and hence the premium returns of the stand-

alone insurances – are not perfectly negatively correlated, the combination of the two

insurances can only partially eliminate adverse selection incentives. The risks cannot be

perfectly hedged and there are remaining differences in the premium returns in a combined

insurance. Besides, a correlation between [−1, 0] reinforces Equation (6)’s first two effects

on the optimal top-up ρ∗ in both directions. Hence, a lower correlation in absolute terms
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yields a positive (negative) effect on ρ∗ if the ratio of the standard deviation (factor 2 in

Equation (6)) is larger (less) than one.

Bringing the Model to the Data In our empirical section, we will elaborate on the

quantitative importance of the effects described above for the different groups ξ, which

we will specify as quintiles of lifetime income, gender, and marital status. Section 5

shows results for premium returns over lifetime income quintiles. We will label the slope

of the line connecting the premium returns over income quintiles as gradients, referring

to the well-known socioeconomic gradient in mortality discussed in the health-economics

literature, see, e.g., Dow and Rehkopf (2010). Factor two in Equation (6) – the ratio of

the standard deviations – is a measure for the sign and the steepness of these gradients.

In contrast, the correlation can be seen from the shape of the premium returns over

income and their relative (opposing) slopes: two linear and opposing slopes indicate a

high negative correlation.

We further assume that agents can purchase insurance by paying a lump-sum pre-

mium Pk at (initial) age 65, priced at the average risk. We estimate the quantities s(ξ)

and l(ξ) with our multi-state model. We discretize type distribution G, by taking the

empirical probability of observing the type ξ at age 65. This also allows us to calculate

the population’s remaining life expectancy E(s(ξ)) and the unconditional time spend in

long-term care E(l(ξ)).

4 Data and empirical approach

4.1 Institutional context

The Netherlands has a universal and generous pension and long-term care system. The

pension system consists of a tax-funded minimum social security benefit (first-pilar) that

is paid from the statutory retirement age to every Dutch citizen with a required minimum

time living in the country. This AOW (Algemene Ouderdomswet) pension is comple-

mented with a (second-pilar) occupational defined benefit pension, which is mandatory

(except for self-employed) and based on past lifetime earnings. The replacement rate is

quite high, reaching around 70% of average lifetime earnings (Knoef et al. (2017)).

The public long-term care system provides coverage for both formal long-term care at
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home and in a nursing home. Unlike the U.S., private LTC insurance and out-of-pocket

expenditures are marginal, being less than 0.5% of total long-term care expenditures

(Colombo et al., 2011). Everyone who lives in the Netherlands is insured and pays

income-dependent premia. Total long-term care expenditures are 4.1% of GDP and

among the highest of OECD countries (European Commision, 2015). Every request for

long-term care is assessed by the Centre for Care Assessment (CIZ), taking into account

the usual informal care that partners or other household members give to each other (Mot,

2010). Nursing home care is available for individuals with more severe conditions or a less

supporting environment. However, individuals may also choose to receive personal care

at home. When getting personal care at home, the partner is expected to provide the

usual domestic and supportive care. Individuals are entitled to less personal care when

the partner voluntarily provides personal care (Mot, 2010; Bakx et al., 2015). In 2015,

a major long-term care reform has been implemented, reducing coverage and increasing

co-payments. In the new system, only people who need care day and night are entitled

to care in a nursing home. For people with lighter care needs, personal care at home is

no longer publicly insured (Maarse and Jeurissen, 2016).

Overall, the Netherlands stands out from other OECD countries in old-age social

insurance by providing an almost universal public long-term care scheme with generous

coverage, which implies low out-of-pocket expenses so that adverse selection problems

for using long-term care are arguably low. Eligibility rules depending on informal care

availability also suggest low selection effects into long-term care. These institutional

factors allow us to estimate arguably unbiased socioeconomic differences in long-term

care use and mortality.

4.2 Data and sample selection

We use administrative data for the Netherlands containing detailed longitudinal infor-

mation on formal long-term care use and mortality (exact date of death) for the entire

population. Administrative data on formal nursing home care and home care is obtained

from the Central Administration Office (CAK). These data cover all residents of the

Netherlands aged 18 and older who have long-term care expenses that are covered by the

public long-term system. Data on mortality is obtained from the causes of death reg-

istry. In addition, we use detailed income and assets data from tax registries to measure
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socioeconomic status. Demographic characteristics, including age, gender, and marital

status are obtained from the municipality population register.

While the long-term care use data are available since 2004, we use them starting in

2006 when also assets data are available to determine socioeconomic status. Our study

ends in 2014 before the major reforms of the long-term care system were implemented.

We include retired individuals aged 65+ and their partners whose main source of income

is pension income. We exclude individuals if they are not registered in the Netherlands for

the entire sample period. Further, we exclude households remarrying or divorcing after

age 65 (4.5%). We exclude a few households with negative income or assets and those

with missing data (0.2%). This leaves us with a final sample of 3,219,297 individuals in

2,198,755 households.

4.3 Variables

Formal long-term care use is defined broadly, including institutionalized and home care.

Institutionalized care comprises nursing home care and psychiatric or disabled care. For

our sample, nursing home care covered about 93% of institutionalized care in 2006. Home

care use is defined as receiving personal care, such as help with daily activities (ADL),

and nursing care, such as wound dressing. We do not include domestic care. For institu-

tionalized care, we measure each spell’s starting and end date; for home care we measure

the spells on a 4-week basis after 2008 and until 2008 as the first and last day of use

in the year.17 We excluded spells where home care was provided for less than one hour

during the year.

For the covariates, marital status is defined as being in a couple (married, a reg-

istered partnership, or cohabiting) or a single-person household. Socioeconomic status

is measured by average retirement income, which is the sum of personal gross income

(deflated using CPI) – and for couples, its sum – and the annuity value of household fi-

nancial assets. As our sample contains retired individuals only, average retirement income

provides a good proxy for lifetime income. To compute the annuity value of household

assets, we follow Knoef et al. (2016), see Appendix A for details. Household financial

assets are particularly important to include as a source of retirement income for former

self-employed individuals. Retirement income is equivalized using OECD scales to make
17For 2008, each spell’s start and end date is marked by the start and end of the calendar year.
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couples and single-person households comparable regarding retirement income. Based on

this measure, we construct lifetime income quintiles.

4.4 Multi-State Model

We use a multi-state model to estimate lifetime long-term care use and remaining life
expectancy at age 65 for different groups h ∈ H (lifetime income quintile, gender, initial
marital status at age 65). The model has three states (no long-term care use, long-term
care use, and death) with transition rates λk(t), and individuals can repeatedly visit the
states (both in the model and data). To estimate the transition rates we apply a com-
peting risk analysis, i.e. we take into account that only one of two possible transitions
takes place, leaving the other transition unobserved. We assume the transition rates to be
independent in terms of unobservable characteristics, so the transition rates can be sepa-
rately estimated per state using a mixed proportional hazard (MPH) model (Hougaard,
2000; van den Berg, 2001):

λk(t, marstati(t); νk
i , γk, βk) = λ0(γk, t) · ϕ(βk, marstati(t)) · νk

i , (8)

where λ0(γk, t) = exp{(γk + γkh) · t} is the baseline hazard capturing age-specific tran-

sition rates for each state and group, with t as the age-indicator. The parameter γkh

captures the difference in the age-specific transition rates over groups. The advantage of

using age as a time scale is that we abstract from unknown information regarding some

individuals’ beginning of the no-long-term care use or long-term care use spell. Other-

wise, we should have imputed the starting dates or excluded these left-censored spells18,

which might result in biased estimates because of an initial conditions problem Heck-

man (1981). We assume a Gompertz functional form for the baseline hazard, which is a

common specification for adult mortality in developed countries (see e.g. Missov et al.,

2015).

The second term of the MPH model ϕ(βk, marstati(t)) = exp{ βk+β1kh+β2khmarstati(t)}

includes current marital status (for initially married couples) as a time-varying covariate

to capture the transition from being married to a single-person household. Moreover, it

captures differential mortality and differences in informal care possibilities between sin-

gles and couples. The parameter β1kh measures the difference between initial singles and
18Contrary to left-truncated spells, left-censored spells have an unknown start date.
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initially married individuals who have become single, and β2kh picks up the additional

impact of becoming single while currently married.

The third term of the MPH model νk
i ∼ Γ

(
1

σ2
k
, 1

σ2
k

)
is an individual-specific random

effect accounting for dynamic selection and other unobservable differences between indi-

viduals, for instance, factors explaining mortality among the oldest old and the mortality

plateau (see e.g. Vaupel et al., 1998; Barbi et al., 2018). We assume this so-called frailty

term to follow a Gamma distribution because it well describes observed heterogeneity

over long durations (and, therefore, frailty in old age) (Abbring and van den Berg, 2007);

moreover, unique parameter identification exists (Honoré, 1993). Individuals draw the

random effect value at initial age 65. For tractability, the random effect is not shared

over different states.

Estimating a mixed proportional hazard model with left truncation and frailty is

computationally challenging because the left-truncated sample has a different frailty dis-

tribution. Allowing for time-varying covariates and repeated spells adds a layer of com-

plexity. Because we assume independence across transitions, we follow the estimation

technique by van der Vaart and van den Berg (2023) addressing these challenges; see Ap-

pendix B for more details and the maximum likelihood specification. Having estimates

on the transition rates, we use a simulation model to determine long-term care use and

remaining life expectancy at age 65 for different groups. As a starting point, we use

the conditional distribution of our variables at age 65 (see Table 4 in Appendix B). For

the simulations, we extend the approach by Crowther and Lambert (2017) to allow for

transitions from couples to single-person households. More specifically, for couples, we

first simulate age profiles from age 65 until the end of life for both partners. Next, we

re-simulate the remaining age profile for the surviving partner according to our simula-

tion model. We simulate N=100,000 households repeated 5,000 times to construct 95%

confidence intervals; see Appendix B for additional details.

5 Results

We show results on the simulated durations of long-term care and life expectancy over

lifetime income and we highlight the importance of gender and marital status. We then

show how these differences translate into the value of annuity- and LTC insurance and
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we finally present results for a life care annuity.19

5.1 Socioeconomic Differences in Long-term Care and Mortal-

ity

We find substantial gradients in long-term care use and remaining life expectancy over

lifetime income. Table 1 shows that low-income individuals live shorter than high-income

individuals but use more long-term care. On average, men and women in the bottom

income quintile, respectively, live 4.0 and 2.3 years shorter than their high-income coun-

terparts in the top income quintile (see last column). On contrary, low-income men and

women spend 1.1 and 1.7 years longer in long-term care than their high-income counter-

parts. There are also gradients in the probability of ever using long-term care, ranging

from 91% for women in the bottom income quintile to 86% in the top income quintile.

Overall, the income gradient concerning life expectancy is steeper for men than for women

while, reversely, the gradient for long-term care is steeper for women than for men.

Table 1: Life Expectancy and Long-term Care Use by Lifetime Income Quintiles

All Bottom Second Third Fourth Top ∆Top -
(a) Men Bottom

LE at age 65 (years) 18.0
(17.9;18.1)

15.3
(15.0;15.5)

16.8
(16.6;17.0)

17.6
(17.5;17.8)

18.4
(18.2;18.6)

19.2
(19.1;19.4)

4.0
(3.7;4.2)

∆(Married - Singles) 2.5
(2.3;2.7)

2.0
(1.6;2.5)

2.7
(2.2;3.1)

2.6
(2.2;3.0)

2.5
(2.1;2.9)

1.6
(1.2;2.0)

−0.4
(−1.0;0.1)

LTC (years)⋆ 3.1
(3.0;3.1)

3.8
(3.7;4.0)

3.4
(3.3;3.6)

3.2
(3.1;3.2)

3.0
(2.9;3.0)

2.8
(2.7;2.8)

−1.1
(−1.2;−0.9)

∆(Married - Singles) −0.8
(−0.9;−0.7)

−1.8
(−2.0;−1.5)

−1.5
(−1.8;−1.3)

−0.7
(−0.9;−0.6)

−0.3
(−0.5;−0.2)

−0.2
(−0.4;−0.1)

1.6
(1.3;1.9)

Ever use LTC (%) 77
(76;78)

79
(78;80)

79
(78;80)

78
(77;79)

77
(76;78)

75
(75;76)

−3
(−5;−2)

(b) Women

LE at age 65 (years) 21.9
(21.8;22.0)

20.1
(19.9;20.3)

21.8
(21.6;22.0)

22.0
(21.8;22.2)

22.2
(22.1;22.4)

22.3
(22.2;22.5)

2.3
(2.0;2.5)

∆(Married - Singles) 1.8
(1.6;2.0)

3.0
(2.6;3.4)

2.0
(1.6;2.4)

1.4
(1.0;1.7)

1.2
(0.8;1.5)

0.6
(0.3;1.0)

−2.4
(−2.9;−1.9)

LTC (years)⋆ 5.1
(5.1;5.2)

6.0
(5.9;6.2)

5.9
(5.8;6.0)

5.3
(5.2;5.4)

4.8
(4.7;4.9)

4.4
(4.3;4.4)

−1.7
(−1.8;−1.5)

∆(Married - Singles) 0.1
(0.0;0.1)

0.4
(0.2;0.7)

0.4
(0.2;0.6)

0.3
(0.1;0.5)

0.4
(0.2;0.6)

0.4
(0.2;0.6)

−0.1
(−0.4;0.3)

Ever use LTC (%) 89
(88;89)

91
(91;92)

91
(91;92)

89
(89;90)

88
(88;89)

86
(85;87)

−5
(−6;−4)

Notes: These are population-averaged measures for the life cycle simulation of 100,000 households. We present the median
estimates across 5,000 bootstrapped samples and the 2.5th and 97.5th percentiles between brackets. Sample sizes are
reported in Table 4 in Appendix B.

To see the role of having a partner for these socioeconomic gradients, we turn to

the difference for initially married versus initially single individuals. Marital status is an
19A robustness check confirmed a good match between simulated and empirical surival and long-term

care use probabilities by age, marital status, lifetime income and gender. Results are available upon
request.
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important factor influencing the transition into long-term care and mortality. We simulate

the durations separately for individuals who married at age 65 and those single and

compute the difference ∆(Married − Singles).The difference in life expectancy between

initial married and singles is 2.5 years for men and 1.8 years for women. This survival

advantage of being married is among others reported in Pijoan-Mas and Ŕıos-Rull (2014).

In addition, we find that single men spend 0.8 years more in long-term care than their

married counterparts. We do not find a significant difference of long-term care use over

marital status for women. This result suggests that women have fewer opportunities to

get informal care from their spouse than men and tend to live longer.

The number in the last column corresponds to a differences-in-differences approach

showing how being married or single affects the difference between the top and the bottom

income quintile. Our results show that the gap in life expectancy between the bottom

and top income group is 2.4 years smaller for married women than for single women.

Essentially, this implies that being married flattens the income gradient of life expectancy

for women: only for single women we observe a strong gradient over income while this

is moderate for married women. This same number is only 0.4 years for men, implying

that the gradient in life expectancy is only moderately flattened for married individuals.

Similarly, the gap in long-term care use between the bottom and top income group is

1.6 years smaller for married men than for single men. This number is 0.1 years but

insignificant for women. Again, this implies that the income gradient in long-term care

use for married men is almost flat, whereas it is relatively strong for single men.

Turning to the socio-demographic difference, we find that women tend to live 3.9

years longer than men (21.9-18.0 years). In addition, women have a higher prevalence

and longer duration of long-term care use than men: About 89 percent of women ever uses

long-term care with an average duration of 5.1 years conditional upon use. In contrast,

77 percent of men use long-term care with an average duration of 3.1 years, amounting

to 12% of their remaining lifetime, compared to 18% for women.
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5.2 Premium Returns of Old-Age Insurances

5.2.1 Stand-Alone Contracts of Annuity and LTC Insurance

We translate the heterogeneity in long-term care use and life expectancy into a money’s

worth for the different insurances over subgroups according to Equation (5).

Uniform Premium We first study an annuity and a LTC insurance independently

assuming a uniform premium for everyone for each insurance, implying that the total

insured sample H comprises the whole population at age 65+. We focus on the income

quintiles as our subgroups. The implied premium returns are depicted in Figure 2.

Figure 2: Premium Return with Uniform Premium
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Notes: Population-averaged premium returns for the life cycle simulation of 100, 000
individuals. Medians across 5,000 bootstrapped samples are shown. The underlying premium
returns on the pension annuity, LTC insurance, and life care annuity are provided in Table 8
in Appendix F.

As reflected by the steeper line, the results show that benefit inequality across income

groups is larger for LTC insurance than for annuities. The premium return for the lowest

income group is 29.9 percent, implying that a premium of one Euro yields an expected

value of benefits of 1.299 Euro. On the other hand, the highest income groups lose 17.0

cents on every euro invested in the LTC insurance. On the contrary, for every euro

invested in the annuity priced according to the average risk, households in the lowest
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income group receive only 91.1 cents. Households in the highest income groups have a

positive return and earn 3.6 cents on top of every euro invested. The larger discrepancy in

premium returns for LTC insurance makes this insurance product more prone to adverse

selection by income groups than pension annuities in our case.

Figure 3: Premium Returns by Gender and Marital Status with Uniform Premium

(a) Married Men
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(b) Married Women
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(c) Single Men
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(d) Single Women
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Notes: These are population-averaged premium returns for the life cycle simulation of 100, 000
individuals. Medians across 5,000 bootstrapped samples are shown.

The socio-demographic differences of life expectancy and long-term care use over

marital status and gender translate into heterogeneity in premium returns over these

dimensions. There is also a negative correlation in risks for marital status as married

individuals live longer but spend less time in long-term care - at least for men. Note,

however, that the two risks are not negatively correlated over gender because women have

a higher life expectancy and spend more time in long-term care.

This is reflected in Figure 3 which shows the implied premium returns with uniform

premium over marital status and gender. The large difference across panel (a)-(d) reveals
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strong level effects, particularly over gender. Married men have negative premium returns

throughout the income distribution, whereas married women value both insurances. The

reason for this outcome is simple: men die earlier and they use less long-term care.

Insurances priced at the average risk are not valuable for this group.20 The picture is

similar for singles, except single men in the two lower income quintiles who enjoy positive

returns of an LTC insurance.

Group-Specific Premia The large differences in premium returns for stand-alone pen-

sion annuities and LTC insurance can potentially lead to strong adverse selection effects

based on marital status and gender. To prevent a potential unraveling of the insurance

market, group-specific premia based on observables such as marital status and gender

might reduce adverse selection problems.

Figure 4 shows the effect of marital-status-, and gender-specific premia on the pre-

mium returns. Compared to Figure 3, group-specific premia shift the lines closer to zero,

while –unsurprisingly– the gradients over income still persist. Offering premia that may

differ over gender and marital status, however, are able to eliminate the large level effects

of the premium returns between these groups which decrease the adverse selection prob-

lem significantly. Figure 4 also shows large variations in the steepness and the shape of

the gradients. For example, the income gradients in long-term care are particularly steep

for married women and single men, while the shape of the gradient for married men is

more hump-shaped. The annuity gradient over income is stronger for men (both married

and single) and almost non-existent for married women. These differences become im-

portant when analyzing the optimal combination of the two insurances which we turn to

next.

5.2.2 A Life Care Annuity

As shown in Section 3, combined insurance can moderate welfare losses from adverse

selection when the correlation between surviving and getting in need of long-term care

is negative. In our setting, this is reflected by the reverse gradients of the premium-

return lines depicted in Figures 2 to 4. However, at least with a uniform premium, we
20For practical reasons, we assume that discrimination over lifetime income is not possible for insurance

companies. This information is not only hard to obtain for insurances, it is also hard to imagine a
regressive premium system where the income-poor need to pay higher premia than the income-rich to
reduce differences in premium returns in the LTC insurance.
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Figure 4: Premium Return over Gender and Marital Status with Group-Specific Premium

(a) Married Men
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(b) Married Women
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(c) Single Men
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(d) Single Women
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Notes: Population-averaged premium returns for the life cycle simulation of 100, 000
individuals. Medians across 5,000 bootstrapped samples are shown. The underlying premium
returns on the pension annuity and LTC insurance are provided in Table 8 in Appendix F.

have a positive correlation of longevity and LTC risk over gender, which counteracts this

negative correlation (cf. Figure 3).

We derive an optimally life care annuity according to Equation (6) and compare two

cases assuming (i) a uniform premium over all observable groups (i.e., lifetime income,

gender, marital status) and (ii) group-specific premia over gender and marital status

where the optimal top-up ρ∗ is found only over the remaining differences over lifetime

income.

Table 2 shows the results of the optimal top-up of long-term care benefits and Table

3 presents standard deviations for stand-alone insurances and the life care annuity as a

measure for the adverse selection problem with each of the three insurances.

We first turn to the case assuming a uniform premium paid by all individuals. The
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optimal top-up of LTC benefits needed to minimize the heterogeneity in premium returns

across income groups is negative, ρ∗ = −0.56, implying a lower benefit when needing long-

term care, which is, of course, not a meaningful insurance. The result is coming from an

overall strongly positive correlation between the two risks across the studied risk types.

Recall our finding that women live longer and use more long-term care than men, implying

a positive correlation of risks across gender. These large gender differences in longevity

and long-term care use are stronger than the – negatively correlated – differences over

income and marital status and induce an overall positive correlation between longevity

and long-term care use. In addition, Table 3 shows that the standard deviation for the

combined product is still very high, so the bundling does not reduce the adverse selection

problem by much. Overall, this implies that a life care annuity with uniform premium

does not work, so we now turn to group-specific premia.

First, note that with group-specific premia, all correlations turn negative, cf. column

3 in Table 2, which was already implied by the inverse gradients shown in Figure 4.

To understand the different values of the optimal top-up, ρ∗, over these groups, let us

decompose it into its components in the first three columns. The first column can be

interpreted as the value of ρ∗ if the heterogeneity in risk would be equal over states

(implying a ratio of the standard deviations of one), and the correlation would be perfectly

negative. Similarly, the second column would be the value of ρ∗ if the duration would

be equal for both states and the correlation −1. The value ρ⋆
Corr=−1 then is simply the

product of the two, while the final column shows the sum of all three effects including

the effect stemming from a non-perfectly negative correlation of the two risks.

Turning first to married men we observe that the duration in long-term care is rather

short, so the optimal top-up would be 8.5 from the level effect alone. This can be

seen from the optimality condition in Equation (6), prescribing a higher benefit to be

paid in states with shorter duration. At the same time, the heterogeneity in longevity

risk is larger, reinforcing the effect on the optimal top-up. If the heterogeneity effect is

isolated, the optimal top-up would only be 1.26 because Equation (6) prescribes to put a

higher weight on the less heterogenous state (needing long-term care in this case). The

combined effect in column 4 is actually quite close to the final optimal value of 11.16

because the correlation between the two risks is quite strongly negative (−0.73). The

value of ρ∗ = 11.16 implies that the benefit in the case of long-term care need to be more
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than 11 times larger than the annuity benefit, a high number that we put into perspective

in the next section.

Table 2: Optimal life care Annuity: ρ∗ and Components

Level
effect

Heterogeneity
in risk

Correlation
between risks

Optimal
LTC top-up

E(s(ξ))
E(l(ξ))

SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} Corr
{

s(ξ)
E(s(ξ)) , l(ξ)

E(l(ξ))

}
ρ⋆

Corr=−1 ρ⋆

Uniform Premium 5.68 0.33 0.57 1.88 −0.56

Group-Specific Premium

Married Men 8.50 1.26 −0.73 10.67 11.16
Married Women 5.03 0.04 −0.32 0.22 0.08
Single Men 5.25 0.42 −0.93 2.18 2.11
Single Women 4.41 0.35 −0.90 1.55 1.47

Median estimates across 5,000 bootstrapped samples. Optimal top-up and its components according to
eq. (7) and (6).

In stark contrast, married women have an optimal top-up of only 0.08 implying the

optimal combination of insurances is close to a mere annuity. Two factors from the data

drive this result: First, the heterogeneity in risk is very low for annuities compared to a

strong one for LTC insurance implying the ratio to be 0.04; also when compared with the

flat gradient for annuities and the strong gradient in long-term care insurance in panel

(b) of Figure 4. In addition, the correlation is with −0.32 only moderately negative and

a combination of the two insurances is not well-suited.

The picture is quite different for single individuals. Here, we find almost perfectly

negative correlation between the risks as well as offsetting level effects and heterogeneity

in risks yielding reasonable values for the optimal top-up between 2.11 for single men and

1.47 for single women.

The standard deviations for group-specific premium returns in Table 3 reveal the high-

est values for the stand-alone LTC insurances implying that adverse selection problems

are most severe for this case. With group-specific premia, a life care annuity reduces these

heterogeneities substantially always yielding lower standard deviations than in both of

the stand-alone insurances.

Our results suggest that a life care annuity to hedge the two risks of longevity and

long-term care is not quite possible for married men and women. The implied top-up

of the benefit in the long-term care state is unreasonably high for married men and
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Table 3: Standard deviations of premium returns

Annuity LTC
insurance

Life Care
annuity

SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

}
SD
{

s(ξ)+ρ∗·l(ξ)
E(s(ξ))+ρ∗·E(l(ξ))

}
Uniform Premium 11.47

(11.21;11.72)
34.64

(33.82;35.45)
11.00

(10.77;11.23)

Group-Specific Premium

Married Men 7.57
(6.86;8.31)

6.04
(4.32;7.96)

2.42
(1.02;4.15)

Married Women 0.63
(0.31;0.98)

14.15
(12.88;15.37)

0.55
(0.22;0.93)

Single Men 8.74
(7.79;9.72)

21.06
(18.84;23.29)

2.22
(1.09;3.43)

Single Women 5.01
(4.46;5.55)

14.26
(13.0;15.55)

1.64̇
(0.97;2.34)

Values computed correspoind to the objective function from eq. 5 and multiplied with 100%. Median
estimates across 5,000 bootstrapped samples and the 2.5th and 97.5th percentiles between brackets.

unreasonably low for married women. In contrast, a combined insurance is well-suited

for single individuals.

6 Discussion

Our analysis points to a broader question of why, in practice, certain risks are covered

under bundled policies while others are not. Examples for bundled insurance policies are

not only life care annuities, but also life-insurances with a LTC rider, combined disability

coverage, reverse mortgage, or home-car insurance, cf. Eling and Ghavibazoo (2019).

In our analysis, we shed further light on when and how to combine insurance products

by disentangling the determinants of the risk structure when bundling is possible and

what it depends on. To minimize the adverse selection problem, we show that it is not

sufficient to only focus at the correlation between lifetime long-term care use and life

expectancy, but rather also take into account the average size and variation of these

correlated measures.

Our formula for ρ∗ is easy to apply and to compare to other studies that report lifetime

long-term care use and remaining life expectancy by socioeconomic group. For example,

we can approximate a value of ρ∗ using results from Ko (2022), Table 4, which documents

longevity and long-term care needs over income deciles. Using these numbers yields a
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value of ρ∗ = 2.09 for 60+ individuals in the U.S. ignoring the heterogeneity in gender

and marital status.21

What can be learned from our analysis for the optimal top-up value ρ∗ for the life care

annuity market in the U.S.? According to www.annuity.org, the monthly income stream

paid when healthy in a typical life care annuity contract can be two to three times as large

in the case of long-term care needs. This would imply a value of ρ of two or three for a

typical life care annuity. According to our results in Table 2 these values are very close to

the optimal top-up for single men and women, implying that for these groups the existing

insurances in the U.S. would largely diminish adverse selection problems. However, the

picture looks quite different for married men and married women: Men would require a

benefit level 11 times higher than the annuity paid when not needing long-term care. This

is not offered as a combined product and rather resembles a stand-alone LTC insurance.

In contrast, a stand-alone annuity would rather fit for married women, which is implied

by the value for ρ∗ close to zero. Consequently, the current market for life care annuities

does not seem to reduce adverse selection problems for married individuals.

Another important dimension that our study highlights are group-specific premia, in

particular discrimination of premia over marital status and gender. In the U.S., discrim-

ination over marital status are common practice by offering so-called ’couple discounts’.

Solomon (2022) reports couple discounts for LTC insurance of around 25% compared to

singles. Different premia also prevail for life care annuities, life insurance, and private an-

nuities. Gender-based pricing in insurance is still practice for many insurances and many

states in the US, although the Affordable Care Act banned discrimination over gender for

health insurance in 2014. In the European Union, the Court of Justice declared gender-

specific premia invalid with European legislation and prohibited this practice in Europe

in 2012. For LTC and combined products, however, premia largely vary over gender

and marital status, although couples tend to be insured jointly. According to American

Association for Long-Term Care, premia for single women are around 50% higher than

for men and per-capita also higher than for the combined premium for couples.22

We find sizable differences in the heterogeneity in risks over gender and marital status,

which calls for the need to discriminate premia over these dimensions to tackle adverse
21In the computation we assumed an equal weight for each income group.
22See: https://www.aaltci.org/long-term-care-insurance/learning-center/ltcfacts-2022.

php
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selection problems adequately.

7 Conclusion

We quantify socioeconomic and socio-demographic differences in mortality and long-term

care by estimating a flexible multi-state model on rich administrative data from the

Netherlands. We use the estimated model to examine the adverse selection problems of

stand-alone annuities and of LTC insurance for different groups. We further determine

the optimal combination of these two products in a life care annuity that reduces the

heterogeneity of premium returns across socioeconomic groups. We find a strong socioe-

conomic gradient in mortality and long-term care implying a negative correlation between

the two risks and a large gender gradient in these two risks inducing a positive correla-

tion. A third important factor influencing these differences is marital status indicating

the importance of the availability of informal care by the spouse, particularly for men. A

life care annuity aiming to minimize the heterogeneity of benefits between socioeconomic

groups is not feasible with a uniform premium. Only with group-specific premia and

then mostly for single individuals rather than for the married, a life care annuity can

reduce adverse selection problems. Our results might provide an explanation for why the

existing market for life care annuities in the U.S. is so small.

29



References
Abbring, J. H. and van den Berg, G. J. (2007). The unobserved heterogeneity distribution

in duration analysis. Biometrika, 94(1):87–99.

Ameriks, J., Briggs, J., Caplin, A., Shapiro, M. D., and Tonetti, C. (2018). The long-
term-care insurance puzzle: modeling and measurement. NBER Working Papers no.
22726, National Bureau of Economic Research.

Attanasio, O. P. and Emmerson, C. (2003). Mortality, health status, and wealth. Journal
of the European Economic Association, 1(4):821–850.

Bakx, P., de Meijer, C., Schut, F., and van Doorslaer, E. (2015). Going formal or infor-
mal, who cares? The influence of public long-term care insurance. Health Economics,
24(6):631–643.

Barbi, E., Lagona, F., Marsili, M., Vaupel, J. W., and Wachter, K. W. (2018). The plateau
of human mortality: demography of longevity pioneers. Science, 360(6396):1459–1461.

Bender, R., Augustin, T., and Blettner, M. (2005). Generating survival times to simulate
Cox proportional hazards models. Statistics in Medicine, 24(11):1713–1723.

Boyer, M. M., De Donder, P., Fluet, C., Leroux, M.-L., and Michaud, P.-C. (2020). Long-
term care insurance: Information frictions and selection. American Economic Journal:
Economic Policy, 12(3):134–169.

Braun, R. A., Kopecky, K. A., and Koreshkova, T. (2019). Old, frail, and uninsured:
accounting for features of the U.S. long-term care insurance market. Econometrica,
87(3):981–1019.

Brown, J. and Finkelstein, A. (2007). Why is the market for long-term care insurance so
small? Journal of Public Economics, 91(10):1967–1991.

Brown, J. and Finkelstein, A. (2008). The interaction of public and private insur-
ance: medicaid and the long-term care insurance market. American Economic Review,
98(3):1083–1102.

Brown, J. and Warshawsky, M. (2013). The life care annuity: a new empirical examination
of an insurance innovation that addresses problems in the markets for life annuities and
long-term care Insurance. Journal of Risk and Insurance, 80(3):677–704.

Case, A. and Paxson, C. (2005). Sex differences in morbidity and mortality. Demography,
42(2):189–214.

Coe, N. B., Skira, M. M., and Van Houtven, C. H. (2015). Long-term care insurance:
does experience matter? Journal of Health Economics, 40(3):122–131.

Colombo, F., Llena-Nozal, A., Mercier, J., and Tjadens, F. (2011). Help wanted?: Pro-
viding and paying for long-term care. OECD Health Policy Studies. OECD, Paris.

Crowther, M. and Lambert, P. (2017). Parametric multistate survival models: flexible
modelling allowing transition-specific distributions with application to estimating clin-
ically useful measures of effect differences. Statistics in Medicine, 36(29):4719–4742.

30



Davidoff, T. (2009). Housing, health, and annuities. Journal of Risk and Insurance,
76(1):31–52.
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Appendices

A Constructing a measure for lifetime income

To compute a measure for lifetime income for the households, we follow Knoef et al.
(2016). Their approach allows us to include annuity value of household’s financial assets.
Some households have low income but many assets, e.g., former entrepreneurs, making
it indispensable to include the annuity income from financial assets in a lifetime income
definition. We measure lifetime income as the average income during retirement plus the
annuity value of financial assets.

We use the population tax files on income (2003-2014) and assets (2006-2014). Assets
comprise the sum of savings and stock and bond holdings, but exclude home ownership
because this is strongly correlated with not being in a nursing home (read: long-term
care). Income is measured at the household level, including labor and business income,
retirement income (social security benefits, employer-based, and private pension arrange-
ments), social insurance benefits, taxes, and social insurance contributions. Income pre-
dominantly consists of retirement income, because we restrict households to have this as
their main source of income.

Yet, we do not observe the annuity value of assets, B, which we will therefore impute.
We assume that a household bought an annuity when the oldest member was 65. If
available, the other member might be younger than 65. The price of the annuity equals
the household’s current assets A.23 The annuity yearly pays B if it is a single-person
household and

√
2·B if it is a couple household.

√
2 is an equivalence scale (OECD, 2011)

that the OECD applies when comparing income between single and couple households.
√

2 reflects economies of scaling: couples need less than twice the benefit for singles to
reach the same welfare level.

The product is actuarially fair: the benefit level B is set to equal expected lifetime
benefits to the current assets A. Hence the benefit level B is household-specific. Expected
lifetime benefits look as follows:

E(Benefit(B)) =



∑99
n=0

1
(1+r)n (B · nsm) if Single man at age 65∑99

n=0
1

(1+r)n (B · nsw) if Single woman at age 65∑99
n=0

1
(1+r)n

(
B · nsm · (1 − nsw) + B · nsw · (1 − nsm)

+
√

2 · B · nsm · nsw

)
if Married couple at age 65,

where n refers to the years since the oldest household member turned 65. nsm and nsw are
23We implicitly assume that households do not save or dis-save after retirement.
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the probabilities that the man or woman in the household survives n years after buying
the annuity. 1 − nsm and 1 − nsw are the probabilities that the man or woman died
within n years after buying the annuity. The probabilities are gender-, cohort-, and age-
specific, and taken from the life tables of Statistics Netherlands.24 These probabilities are
age-specific because couple members might have a different age when buying the annuity.

The expected benefits E(Benefit(B)) are the sum of benefits expected in each period.
We assume a maximum benefit payout period of 99 years, the length of the life tables.
Benefits are deflated using an assumed yearly interest rate r = 0.02. Focussing on the
case of a single man at age 65, the expected benefit in period n is the product of the
household-specific benefit and the probability of being this household type in period n,
nsw. Likewise for a single woman. The case for couples is more complex. Households are
a single man with probability nsm · (1 − nsw), i.e. the man survived until period n while
the woman has died. Benefits are scaled up by

√
2 in case of couples, which happens with

probability nsm · nsw, i.e. the man and woman both survive.
The annuity benefit, i.e. annuity value of assets, is found by solving A = E(Benefit(B))

for B. Because assets vary each year in the data, the benefit B is time-varying within an
household.

Household’s lifetime income is the average sum of household income and the imputed
annuity value of assets. However, the size of the household might change during these
years, and differs across households. Then, married couples by definition would have
high lifetime income. To tackle this problem, we equivalize household’s income with
equivalence scale

√
2 so to make couples and singles comparable in terms of their income

(cf. Attanasio and Emmerson (2003)). Formally, we calculate lifetime income PIi of
household i as follows:

PIi =
∑Ni

τ=1 Biτ + yiτ√
2 · marstatiτ + yiτ · (1 − marstatiτ )

Ni

,

where yiτ is household income in year τ , Biτ annuity value of assets, Ni the number of
panel observations of household i and marstatiτ an indicator on whether the household
is a couple or single person.

24see: https://opendata.cbs.nl/statline/#/CBS/nl/dataset/37360ned/table?fromstatweb
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B Simulation procedure

B.1 Log-likelihood estimation of λk(t, marstat(t); νk, γk, βk)

Suppose we want to estimate the unknown parameters γk, βk, and σk of the hazard rate
λk(t, marstat(t); νk, γk, βk), specified in (8). We will apply a log-likelihood estimation
procedure to estimate the parameters of transition k. We will derive the probability
distribution that is input for the individual log-likelihood contribution (we drop index i).
To further save on notation, we drop γk and βk; our examples refer to an individual with
a given initial marital status, lifetime income group and gender.

Before we derive the probability distribution of interest, we have to discuss the impli-
cations of our competing risk setting. Essentially, two transitions are possible at any age,
and one will preclude the other from actually occurring. For example, No long-term care
use → Death happens at random age TD = t∗ while No long-term care use → long-term
care use would happen at random age TL = t∗∗ > t∗. We want to estimate the distribu-
tion (transition rate) of both TL and TD. Note that the researcher knows TL ≥ t∗ but
TL = t∗∗ > t∗ is hidden information. The competing risks require a log-likelihood function
involving the joint distribution of the observed event: P(TD = t∗, TL ≥ t∗ | νL, νD). This
distribution simplifies because we assume random effects to be independent across tran-
sitions, i.e., νD ⊥ νL: P(TD = t∗, TL ≥ t∗ | νL, νD) = P(TD = t∗ | νD) ·P(TL ≥ t∗ | νL).
Like the distribution function, the likelihood function will split into two sub-likelihoods
and we can estimate the transition rates with separate regressions, each for a transition k.
The event time TL would be modeled as randomly right-censored at t∗ (P(TL ≥ t∗| νL)).

To explain the estimation of a single transition, we look at an example of an individual
with two spells of type k. The first spell starts at age t0,1 > 0, implying a left-truncated
observation, for example, because the individual is older than 65 when entering the
sample. The other spell starts at age t0,2 > t0,1 > 0. The spells end at ages t1 < t0,2 and
t2, meaning the first spell ends before the next spell starts. The log-likelihood is based
on the joint survival probability of staying in the state until ages t1 and t2, given you
entered the state at ages t0,1 and t0,2. As we will show below, the hazard rate (8) fully
characterizes the distribution T , the random age at transition.

Besides left-truncation, our estimation also considers that marital status is a time-
varying covariate. In the example, we assume that the individual is married during spell
1, i.e. marstat(t) = 1 if t ≤ t1. The individual becomes widowed during spell 2 at age
tw: t0,2 < tw < t2, so marstat(t) = 1 if t < tw < t2 and marstat(t) = 0 if t > tw.

The first ingredient to construct the log-likelihood is to have the integrated hazard
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rate mk, i.e. the transition rate on having made a transition between age 0 and t:

mk(t; νk, marstat = x) =
∫ t

0
λk(τ, marstat = x; νk, γk, βk)dτ

= νk ·
∫ t

0
λk(τ, marstat = x; νk = 1, γk, βk)dτ

= νk · mk(t; νk = 1, marstat = x), (9)

where we can go from step 1 to steps 2 and 3 because the hazard rate is proportional
in νk. The alternative representations using λk(τ, marstat = x; νk = 1, γk, βk) and
mk(t; νk = 1, marstat = x) have a closed-form solution (see: Bender et al., 2005) and
make it easier to derive a closed-form solution for the log-likelihood contribution.

The marital status in (9) is assumed to have the fixed value x = {0, 1} between
age 0 and t, i.e. marital status is time-invariant. The accumulated hazards mk at the
left-truncation points t = t0,1 and t = t0,2 and end age t = t1 are defined according to
(9) because marital status only changes after these ages: tw > t0,2. The definition of
accumulated hazard at age t2, however, differs because marital status changes at tw < t2:

mk(t2; νk, {marstat(s)}t2
s=t0,2) = mk(tw; νk, marstat = 1)

+ mk(t2; νk, marstat = 0) − mk(tw; νk, marstat = 0)

where {marstat(s)}t2
s=t0,2 denotes the covariate path of marital status between age t0,2

and t2. The accumulated hazard consists of the sum of hazard until tw when married
(marstat = 1) plus the hazard accumulated between tw and t2 when single (marstat = 0).

The joint survival probability of not having made the transition until ages t1 and t2

is linked to the integrated hazard rates is:

Pk(T1 > t1, T2 > t2 | {marstat(s)}t2
s=0, νk)

= exp
(
−
{
mk(t1; νk, marstat = 1) + mk(t2; νk, {marstat(s)}t2

s=t0,2)
})

,

which is the exponential function where the negative sum of accumulated hazards serves
as input (see: Bender et al., 2005).

For the left truncation points, we can do the same, i.e. the survival probability of not
having made the transition by ages t0,1 and t0,2:

Pk(T1 > t0,1, T2 > t0,2 | νk, {marstat(s)}t0,2
s=0)

= exp
(
−
{
mk

(
t0,1; νk, marstat = 1

)
+ mk

(
t0,2; νk, marstat = 1

)})
.

The log-likelihood contribution is based on the joint survival probability of staying in
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the state until ages t1 and t2, given you entered the state at ages t0,1 and t0,2:

Pk(T1 > t1, T2 > t2 | T1 > t0,1, T2 > t0,2, ·, νk) = Pk(T1 > t1, T2 > t2 | ·, νk)
Pk(T1 > t0,1, T2 > t0,2 | ·, νk) ,

where for notational convenience we replace the marital histories by a dot ·.
Lastly, we back out the random effect νk, which we do by integrating over its distri-

bution:

Pk(T1 > t1, T2 > t2 | T1 > t0,1, T2 > t0,2, ·)

=
∫ ∞

0

Pk(T1 > t1, T2 > t2 | νk, ·)
Pk(T1 > t0,1, T2 > t0,2 | νk, ·) dΓ(νk | T1 > t0,1, T2 > t0,2, ·)

=
∫∞

0 Pk(T1 > t1, T2 > t2 | νk, ·) dΓ(νk)∫∞
0 Pk(T1 > t0,1, T2 > t0,2 | νk, ·) dΓ(νk)

=

{
σ2

k ·
{
mk(t1; νk = 1, marstat = 1) + mk(t2; νk = 1, {marstat(s)}t2

s=t0,2)
}

+ 1
}− 1

σ2
k

{σ2
k · {mk(t0,1; νk = 1, marstat = 1) + mk(t0,2; νk = 1, marstat = 1)} + 1}

− 1
σ2

k

,

(10)

where the final closed-form expression is the probability distribution we use to construct
the individual log-likelihood contribution (for the derivation, see: van der Vaart and
van den Berg, 2023). The first step – where we integrate over the conditional distribution
of the random effect– reflects dynamic selection. Only a particular share of the initial
population survives until these dates, presumably driven by their favorable random effect.
Hence, the left-truncated distribution deviates from the initial distribution Γ(νk). The
second step uses the initial distribution instead, see van den Berg and Drepper (2016) for
the justification. The last step arrives at the closed-form solution because mk analyzed
at νk = 1 has a closed-form solution itself (see Bender et al. (2005) for the solution of mk

for the Gompertz case).
Note the current case involves right censoring. We here provided the cumulative

probability of staying in a state until a particular age. This refers to the case when we
stop observing the individual at ages t1 and t2 while the actual transition is not yet made,
e.g. due to the end of the observational window or realization of a competing risk (right
censoring). Instead, the log-likelihood contribution involves a probability density if the
individual actually makes the transition. This is done by taking the derivative of the
probability distribution (10) with respect to random variable T1 or T2 and subsequently
multiplying the derivative by −1 (to accommodate that we want a cumulative distribution
function, i.e. <, instead of a survival function, i.e. ≥ probabilities). van der Vaart and
van den Berg (2023) provide the log-likelihood contribution for a general case of n spells
of an individual.

A final remark involves the value of the log-likelihood function. The survival prob-
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ability (10) involves only transition k but not its competing risk, hence the accompa-
nying log-likelihood is a sub-log-likelihood, particular for transition k. If we add the
log-likelihood for the competing risk to this, we obtain the overall likelihood that we
effectively maximize. As said, the two sub-log-likelihoods can be optimized separately
because the unobservable (random) effect is assumed to be uncorrelated across transi-
tions.

We refer to (Honoré, 1993) and (van den Berg, 2001) and the references therein for
parameter identification.

B.2 Simulation

We use estimates for the hazard rates of (8) and (9) to the simulate lifetime duration of
long-term care use and the timing of death for 100,000 households. Households initially
consist a couple of two members or a single member aged 65 years old. Denote the age of
entering the current state by t0, where t0 = 0 means entry at age 65. We are interested
in the subsequent state (not using long-term care, using long-term care, or death) and at
what random age T > t0 this transition occurs. We repeat looking for the next state until
every individual has died. Finally, we have for each individual a sequence of consecutive
states and age at which these states start.

With slight abuse of notation, let the estimates for the integrated hazard rates (9) be
denoted by m̂k(t; νk = 1, marstat = x) = m̂k,x(t). m̂k,x(t) refers to an individual with
current marital status x who is endowed with a gender, initial marital status, and lifetime
income group. Hence, m̂k,x(t) can differ across individuals. For now we assume x is fixed
during life, i.e. we assume initially married individuals to be currently married and
assume that they stay married until they die (x = 1). Initial singles remain unmarried
throughout (x = 0). We introduce widowhood later.

Timing of transition k We use m̂k,x(t) to compute when a transition of type k, e.g.
no long-term care use → death, would take place. To this end, we draw a transition time
from a conditional survival probability like (10): Given that the individual entered the
state at age T > t0, the transition k does not occur before age T > t > t0. This gives: 25

Pk(t | t0, x) = P(T > t | T > t0, x, k occurs) =

(
σ̂2

k · m̂k,x(t) + 1
)− 1

σ̂2
k(

σ̂2
k · m̂k,x(t0) + 1

)− 1

σ̂2
k

∼ U(0, 1)

25Alternatively, we endowed individuals with an individual-specific effect according to Γ̂k and subse-
quently simulated their long-term care use and mortality. Our current approach fits age-specific mortality
rates and long-term care use rates better.
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Related to our case, Bender et al. (2005) provide the closed-form solution of m̂k,x(t) when
the baseline hazard is of Gompertz form.

The key to the simulation is that survival probability Pk(t | t0, x) is uniformly dis-
tributed itself. Suppose we randomly generate u ∈ U(0, 1) and let Pk(t | t0, x) = u. The
value t for which the equation holds, is a randomly generated age tk at which transition
k occurs:

tk = {m̂k,x}−1 (t), with: t = 1
σ̂2

k

·
{
u−σ̂2

k ·
{
σ̂2

k · m̂k,x (t0) + 1
}

− 1
}

.

Hence, we have a closed-form solution to simulate age tk when transition k would occur.
Our simulation considers that other transitions are possible, i.e. ‘not using long-term

car → using long-term care’, that might preclude the transition ‘not using long-term care
→ death’ from occurring. We generate a random age tk for each possible transition. The
minimum across these ages defines the next state and the value for t0 with which we
continue the simulation. We end the simulation if the next state is death.

Widowhood So far we assumed that initially married individuals remain married until
death. However, one of the two couple members will die first, and the surviving household
member becomes single. Becoming single affects the hazard rate m̂k,x and thereby thus
the timing of a transition. While transition paths before widowhood remain unchanged,
we modify the simulated transitions for surviving partner after he or she has become
widowed. Remarriage after widowhood is not possible.

For this, we distinguish two types of transitions. First, we look at the transition
that is the first to occur after widowhood time tw. If the individual remained married,
the transition would take place at simulated age tk,orig. The individual’s accumulated
hazard is m̂k,x=1(tk,orig), which is a counterfactual. The true accumulated hazard is the
accumulated hazard until widowhood m̂k,x=1(tw) complemented with the hazard while
being single: m̂k,x=0(tk) − m̂k,x=0(tw). To incorporate a widowhood effect to tk, we set
the counterfactual and true hazard equal and solve for tk:

m̂k,x=1(tk,orig) = m̂k,x=1(tw) + m̂k,x=0(tk) − m̂k,x=0(tw) →

tk = {m̂k,x=0}−1(t), with: t = m̂k,x=1(tk,orig) − m̂k,x=1(tw) + m̂k,x=0(tw).

Like earlier, the minimum age across possible transitions determines the next state.
All spells that start after widowhood (t0 > tw) have a survivor probability as follows:

(σ̂2
k · {m̂k,x=1(tw) + m̂k,x=0(t) − m̂k,x=0(tw)} + 1)

− 1

σ̂2
k

(σ̂2
k · {m̂k,x=1(tw) + m̂k,x=0(t0) − m̂k,x=0(tw)} + 1)

− 1

σ̂2
k

∼ U(0, 1),
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and the simulated age at transition is:

tk = {m̂k,x=0}−1(t), with:

t = 1
σ̂2

k

· {u−σ̂2
k · {(σ̂2

k · {m̂k,x=0(t0) − m̂k,x=0(tw) + m̂k,x=1(tw)} + 1} − 1} + m̂k,x=0(tw) − m̂k,x=1(tw).

Initialization We endow households with initial marital status, long-term care use, and
lifetime income according to the empirical distribution of households when the members
are aged 65. Sample sizes are provided in Table 4.
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Table 4: Initial household distribution in simulation (N = 100, 000)

No LTC Man Woman Both All2 Share (%)
in LTC in LTC in LTC

All 96,193 1,716 2,047 44 100,000 100.0

Couple
Bottom Lifetime IQ 3,399 61 71 12 3,543 6.3
2nd Lifetime IQ 7,285 79 102 12 7,478 13.2
3rd Lifetime IQ 12,004 96 121 11 12,232 21.6
4th Lifetime IQ 15,046 92 99 6 15,243 27.0
Top Lifetime IQ 17,868 87 89 3 18,047 31.9

All 55,602 415 482 44 56,543 100.0

Single men
Bottom Lifetime IQ 2,324 435 2,759 17.4
2nd Lifetime IQ 1,731 327 2,058 13.0
3rd Lifetime IQ 2,505 260 2,765 17.5
4th Lifetime IQ 3,666 177 3,843 24.3
Top Lifetime IQ 4,297 102 4,399 27.8

14,523 1,301 15,824 100.0

Single women
Bottom Lifetime IQ 6,530 751 7,281 26.3
2nd Lifetime IQ 3,938 337 4,275 15.5
3rd Lifetime IQ 4,615 223 4,838 17.5
4th Lifetime IQ 5,542 162 5,704 20.6
Top Lifetime IQ 5,443 92 5,535 20.0

All 26,068 1,565 27,633 100.0

This table shows the sample distribution at age 65. Long-term care use is measured when the household
member is aged 65, also when there is an age difference between couple members.
IQ = Income Quintile
1The share of an income quintile is not exactly 20% because the lifetime income distribution is determined
by all households instead of only those who were aged 65 during the sampling period.
2 The total number of simulated households is 100,000, for which we provide the counts in this table.
The actual number of households in the data was higher.
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C Demand curves, WTPs, and comparative statics

First, we derive the incentive compatibility constraints, demand curves and willingness-
to-pay (WTP) for buying an annuity, LTC insurance, respectively. We have the utility
function:

V () = U(C1) + (s(ξ) − l(ξ))U(Ch
2 ) + l(ξ)U(C l

2)

Let L = 1 if consumer buys a LTC insurance; =0 otherwise; A = 1 if consumer buys
annuity insurance, 0 otherwise. We assume no saving, so C1 = W1 − PAA − PLL; CH

2 =
W2 + Y · A; CL

2 = W2 + Y · A − X · (1 − L). Substitution of these equalities yields the
following direct utility function:

V (A, L; W1, W2, X, Y, PL, PA, ξ) = U(W1−PAA−PLL)+(s(ξ)−l(ξ))U(W2+Y ·A)+l(ξ)U(W2+Y ·A−X·(1−L))

A consumer buys LTC insurance if:

V (A∗, 1; W1, W2, X, Y, PL, PA, ξ) − V (A∗, 0; W1, W2, X, Y, PL, PA, ξ) ≥ 0,

i.e. the utility when insured exceeds that of being uninsured. Demand for LTC insurance
DL(PL|A∗, W1, W2, X, Y, PA) is the likelihood that this inequality holds:

DL(PL|·) = P(−(U(W1 − PAA∗) − U(W1 − PAA∗ − PL))

+ l(ξ)(U(W2 + Y A∗) − U(W2 + Y A∗ − X)) > 0)

= P(ICL(A∗, W1, W2, X, Y, PL, PA, ξ) > 0), (11)

where ICL is short-hand notation for the left hand side of the incentive compatibility
constraint for LTC insurance. Notice that ICL (a utility difference) is strictly decreasing
in PL. Therefore, demand DL(PL|·) will be strictly decreasing in PL. We can meaningfully
define the WTP as follows:

πL(A∗, W1, W2, X, Y, PA, ξ) = max{PL; ICL(A∗, W1, W2, X, Y, PL, PA, ξ) ≤ 0)}

πL(·) can be solved from the following implicit equation:

ICL(A∗, W1, W2, X, Y, πL(·), PA, ξ) = 0

A consumer buys stand alone annuity insurance if V (1, L∗, W1, W2, X, Y, PL, PA, ξ) −
V (0, L∗, W1, W2, X, Y, PL, PA, ξ) ≥ 0. The demand curve is the probability that this
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incentive compatibility constraint holds:

DA(PA|L∗, W1, W2, X, Y, PL) = P(−(U(W1 − PLL∗) − U(W1 − PA − PLL∗))

+ s(ξ)(U(W2 + Y ) − U(W2)) + (1 − L∗)l(ξ)LL(W2, Y, X) > 0)

= P(ICA(L∗, W1, W2, X, Y, PL, PA, ξ) > 0) (12)

with LL(W2, Y, X) = ((U(W2 + Y − X) − U(W2 + Y )) − (U(W2 − X) − U(W2))). Since
U() is strictly concave and W2 > 0, Y > 0 and X > 0, LL(W2, Y, X) > 0.

Notice that ICA(·) in (12) (a utility difference) is strictly decreasing in PA. This
implies that the demand curve is also decreasing in PA. We can meaningfully define
WTP as follows:

πA(L∗, W1, W2, X, Y, PL, ξ) = max{PA; ICA(L∗, W1, W2, X, Y, PL, PA, ξ) ≤ 0}

In other words, πA(·) can be solved from the following implicit equation:

ICA(L∗, W1, W2, X, Y, PL, πA(·), ξ) = 0

Lastly, consider the case of a life care annuity. Suppose that stand alone insurances
are not available. We assume no saving, so C1 = W1 − PCA · CA; CH

2 = W2 + Y · CA;
CL

2 = W2 +Y ·CA+(ρ ·Y ·CA−X). Substitution of these equalities yields the following
direct utility function:

V (CA; W1, W2, ρ, Y, X, PCA) = U(W1 − PCACA) + (s(ξ) − l(ξ))U(W2 + Y · CA)

+ l(ξ)U(W2 + Y · CA + (ρY · CA − X))

A consumer buys a life care annuity if V (1; W1, W2, ρ, Y, X, PCA)−V (0; W1, W2, ρ, Y, X, PCA) ≥
0. Then, demand for a life care annuity is given by the probability that this incentive
compatibility constraint is met:

DCA(PCA|W1, W2, ρ, Y, X) = P(−(U(W1) − U(W1 − PCA)) + s(ξ)(U(W2 + Y ) − U(W2))+
l(ξ)LLL(W2, ρ, Y, X) ≥ 0) = P(ICCA(W1, W2, ρ, Y, X, PCA, ξ) ≥ 0).

(13)
where

LLL(W2, ρ, Y, X) = ((U(W2 + Y + (ρY − X)) − U(W2 + Y )) − (U(W2 − X) − U(W2)))

Since U() is strictly concave and W2 > 0, Y > 0 and X > 0, LLL(W2, ρ, Y, X) > 0.
Notice that ICCA(·) in (13) (a utility difference) is strictly decreasing in PCA. More-

over, DCA(PCA|·) is strictly decreasing in PCA. So, we can meaningfully define the Will-
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ingness To Pay (WTP) as follows:

πCA(W1, W2, ρ, Y, X, ξ) = max{PCA; ICCA(W1, W2, ρ, Y, X, PCA, ξ) = 0}

In other words, πCA(·) can be solved from the following implicit equation:

ICCA(W1, W2, ρ, Y, X, πCA(·), ξ) = 0.

We now derive the comparative statics of the demand curve considering the premium
and correlation between risks l and s. The demand curves (11), (12), and (13) can be
written as the following implicit functions:

DL(PL|W1, W2, X, Y, PA) = P(l(ξ) · υ2,l,L(A∗, W2, Y, X) ≥ υ1,L(PL|W1, PA, A∗))

DA(PA|L∗, W1, W2, X, Y, PL) = P(l(ξ) · υ2,l,A(L∗, W2, Y, X) + s(ξ) · υ2,s,A(W2, Y ) ≥ υ1,A(PA|W1, PL, L∗))

DCA(PCA|W1, W2, ρ, Y, X) = P(l(ξ) · υ2,l,CA(W2, ρ, Y, X) + s(ξ) · υ2,s,CA(W2, Y ) ≥ υ1,CA(PCA|W1)).

Note that these demand curves are of the form P(l · υ2,l + s · υ2,s ≥ υ1) where (s, l) are
potentially correlated risks and υ2,l > 0, υ2,s > 0 and υ1 ≥ 0 are scalars determining
demand. υ2,l and υ2,s are the utility gains from insurance coverage in period 2 of risks
l and s, respectively. υ1 is the utility loss in period 1 due to paying a premium for the
insurance. Obviously, the larger the insurance utility gains υ2,l > 0 and υ2,s are, the more
likely a consumer will buy insurance. Also, the lower the premium, the smaller the utility
loss υ1 is, and hence the more likely the demand for an insurance product is. Formally:

∂DK(PK |·)
∂PK

=

<0︷ ︸︸ ︷
P(·)

∂υ1,K

·

>0︷ ︸︸ ︷
∂υ1,K

∂PK

< 0

which means that demand is lower if the premium is higher (K ∈ (L, A, CA)).
Next, we ask ourselves: does a demand curve of the form D(P ) = P(l · υ2,l + s · υ2,s ≥

υ1(P )) becomes steeper or flatter if we decrease the correlation θ between risks l and s?
Put concretely, we are interested in the comparative statics:

∂2DL(PL; θ)
∂PL∂θ

; ∂2DA(PA; θ)
∂PA∂θ

; ∂2DCA(PCA; θ)
∂PCA∂θ

.

To this end, we have to explicitly derive the demand curve D(P |θ) = P(l · υ2,l + s · υ2,s ≥
υ1|θ) as a function of correlation θ, because that parameter is missing in the current
demand function. This requires knowledge of the joint distribution of s and l and its
dependence on correlation θ. Also, fixing everything else for our comparative static
means that we want to fix the marginal distributions in the population of l and s, and
only vary the part of the joint distribution that involves the correlation structure. Define
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Γ(Fl, Fs) to be the set of joint distribution functions with marginals Fl = P(l ≤ L) and
Fs = P(s ≤ S). Following Solomon (2022) the correlation structure of interest is:

Definition of a correlation order Suppose we have two populations X, Y ∈ Γ(Fl, Fs)
and have joint CDFs FX , FY , respectively. Solomon (2022) defines the correlation between
l and s in population X is less correlated than in population Y or that X precedes Y in
correlation order, written as X ≾ Y if and only if:

P(s ≤ S, l ≤ L|X) = FX(S, L) ≤ FY (S, L) = P(s ≤ S, l ≤ L|Y ) for all (S, L) ∈ DF ,

so the probability of a pair with low (s, l) is smaller in population X than in Y , implying
the correlation is more negative in population X.

Ideally we have the same marginal distribution in Fl and Fs and modify the joint
relationship between the two variables only via a correlation parameter. A class of dis-
tribution functions that meet these needs including a correlation order, are those of
Farlie-Gumble-Morgenstern form (Denuit and Scaillet, 2004):

F (S, L) = Fl(L) · Fs(S) · (1 + θ · (1 − Fl(L)) · (1 − Fs(S))) (14)

with θ ∈ [−1, 1] governing the dependence between the two marginals and θ = 0 implying
independent distributions for s and l.

For simplicity, we assume l ∼ U(0, 1) and s ∼ U(0, 1) so Fl(L) = L and Fs(S) = S.
Then

F (S, L) = L · S · (1 + θ · (1 − L) · (1 − S)) =⇒

f(S, L) = 1 + θ · (1 − 2L) · (1 − 2S)

To find the demand functions, we have to find the convolution: P(l ·υ2,l +s ·υ2,s ≥ υ1|θ) =
1−P(l ·υ2,l +s ·υ2,s ≤ υ1|θ). We derived the closed form solutions P(l ·υ2,l +s ·υ2,s ≤ υ1|θ),
which are:

υ2
1

2υ2,lυ2,s
+ θ · 1

6 · υ2
1

υ4
2,s

· (υ2
1 − 2(υ2,l + υ2,s) · υ1 + 3υ2,lυ2,s), if υ1(P ) ≤ min(υ2,l, υ2,s)

υ1
υ2,s

− υ2,l

2·υ2,s
+ θ · 1

6 · υ2,l

υ2,s
·
(
1 − 2 ·

(
υ1−υ2,l

υ2,s

)
− υ2,l

υ2,s

)
, if υ1(P ) ∈ [υ2,l, υ2,s]

υ1
υ2,l

− υ2,s

2·υ2,l
+ θ · 1

6 · υ2,s

υ2,l
·
(
1 − 2 ·

(
υ1−υ2,s

υ2,l

)
− υ2,s

υ2,l

)
. if υ1(P ) ∈ [υ2,s, υ2,l]

1 − υ2,l+ 1
2 υ2,s−υ1
υ2,l

− 1
2 · (υ1−υ2,l)2

υ2,lυ2,s
− θ · 1

6 · υ2,s

υ2,l
·υ1−υ2,s

υ2,l
+ υ1−υ2,l

υ2,l
− 3 ·

(
υ1−υ2,l

υ2,s

)2


−θ · 1
6 · υ2,s

υ2,l
·

2 ·
(
1 − υ2,s

υ2,l

)
·
(

υ1−υ2,l

υ2,s

)3
+ υ2,s

υ2,l
·

υ1−υ2,l

υ2,s

4, if υ1(P ) ≥ max(υ2,l, υ2,s),
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which depends on the premium level (P) via υ1(P ), with υ′
1(P ) > 0.

We are interested in the sign of the comparative static:

∂2P(l · υ2,l + s · υ2,s ≥ υ1(P )|θ)
∂P∂θ

= −∂2P(l · υ2,l + s · υ2,s ≤ υ1(P )|θ)
∂P∂θ

= υ′
1(P )·−∂2P(l · υ2,l + s · υ2,s ≤ υ1|θ)

∂υ1∂θ

The relevant part of the comparative static is −∂2P(l·υ2,l+s·υ2,s≤υ1|θ)
∂υ1∂θ

, given by:

−1
6 · υ1

υ4
2,s

· (4υ2
1 − 6(υ2,l + υ2,s) · υ1 + 6υ2,lυ2,s), if υ1(P ) ≤ min(υ2,l, υ2,s)

1
6 · υ2,l

υ2,s

· 2
υ2,s

, if υ1(P ) ∈ [υ2,l, υ2,s]

1
6 · υ2,s

υ2,l

· 2
υ2,l

. if υ1(P ) ∈ [υ2,s, υ2,l]

1
6 · υ2,s

υ2,l

· 1
υ2,lυ3

2,s

·

2υ3
2,s − 6υ2,lυ2,s · (υ1 − υ2,l)


+1

6 · υ2,s

υ2,l

· 1
υ2,lυ3

2,s

·

6(υ2,l − υ2,s) · (υ1 − υ2,l)2 + 4 · (υ1 − υ2,l)3

, if υ1(P ) ≥ max(υ2,l, υ2,s)

which has sign:

≤ 0, if υ1(P ) ≤ min
3

4 ·

υ2,l + υ2,s −
√

υ2
2,l + υ2

2,s − 2
3υ2,lυ2,s

 , υ2,l, υ2,s


≥ 0, if υ1(P ) ∈

3
4 ·

υ2,l + υ2,s −
√

υ2
2,l + υ2

2,s − 2
3υ2,lυ2,s

 , min(υ2,l, υ2,s)


≥ 0, if υ1(P ) ∈ [υ2,l, υ2,s]

≥ 0, if υ1(P ) ∈ [υ2,s, υ2,l]

≥ 0, if υ1(P ) ∈

max (υ2,l, υ2,s) ,
3
4 ·

υ2,l + υ2,s +
√

υ2
2,l + υ2

2,s − 2
3υ2,lυ2,s


≤ 0 if υ1(P ) ∈

3
4 ·

υ2,l + υ2,s +
√

υ2
2,l + υ2

2,s − 2
3υ2,lυ2,s

 , υ2,l + υ2,s

 ,

implying that the impact of θ on the slope of the demand curve changes sign maximally
twice. If ∆θ < 0, then the demand function features a steeper decline at high values of
P , is flatter at intermediate values of P , and has a steeper decline at low values of P .
The demand curve becomes flatter, because total risk exposure is more homogenous if
the correlation is more negative, i.e. θ is lower. However, at high and low premia, there
is a steeper decline because extreme risk individuals are still possible, i.e. with a high
pair of risks (s = 1, l = 1) or a low pair of risks (s = 0, l = 0).
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D Derivation of Equation (6)

The first-order condition: 0 = ∂F(ρ)
∂ρ

= 2 · E
(

PR(ξ, ρ) · ∂PR(ξ, ρ)
∂ρ

)
, with:

PR(ξ, ρ) = s(ξ) + l(ξ) · ρ

E(s(ξ)) + E(l(ξ)) · ρ
− 1, (15)

First, we determine ∂P R(ξ,ρ)
∂ρ

. Suppose ρ ̸= −E(s(ξ))
E(l(ξ)) , E(s(ξ)) ̸= 0 and E(l(ξ)) ̸= 0, then:

∂PR(ξ, ρ)
∂ρ

= l(ξ) · {E(s(ξ)) + ρ · E(l(ξ))} − ·E(l(ξ)) · {s(ξ) + ρ · l(ξ)}
{E(s(ξ)) + ρ · E(l(ξ))}2

= l(ξ) · E(s(ξ)) − E(l(ξ)) · s(ξ)
{E(s(ξ)) + ρ · E(l(ξ))}2

= ω(ρ)2 ·
{

l(ξ)
E(l(ξ)) − s(ξ)

E(s(ξ))

}
and: ω(ρ) =

√
E(l(ξ)) · E(s(ξ))

E(s(ξ)) + ρ · E(l(ξ)) ̸= 0. (16)

We use this result to solve first-order condition (15):

0 = 2 · E

PR(ξ, ρ) · ∂PR(ξ, ρ)
∂ρ

∣∣∣∣∣
ρ=ρ⋆


= 2 · E

({
s(ξ) − E(s(ξ)) + ρ⋆ · (l(ξ) − E(l(ξ)))

E(s(ξ)) + ρ⋆ · E(l(ξ))

}
· Ω(ξ)

)
· ω(ρ⋆)2 →

E {(s(ξ) − E(s(ξ))) · Ω(ξ)} = −ρ⋆ · E {(l(ξ) − E(l(ξ))) · Ω(ξ)} →

ρ⋆ = E(s(ξ))
E(l(ξ)) ·

E
{(

s(ξ)
E(s(ξ)) − 1

)
· Ω(ξ)

}
E
{(

l(ξ)
E(l(ξ)) − 1

)
· −Ω(ξ)

} , with: Ω(ξ) = l(ξ)
E(l(ξ)) − s(ξ)

E(s(ξ))

Substituting back Ω(ξ) gives:

ρ⋆ = E(s(ξ))
E(l(ξ)) ·

E
{{

s(ξ)
E(s(ξ)) − 1

}{
l(ξ)

E(l(ξ)) − s(ξ)
E(s(ξ))

}}
E
{{

l(ξ)
E(l(ξ)) − 1

}{
s(ξ)

E(s(ξ)) − l(ξ)
E(l(ξ))

}}

= E(s(ξ))
E(l(ξ)) ·

E
{{

s(ξ)
E(s(ξ))

}{
l(ξ)

E(l(ξ))

}}
+ E

{
s(ξ)

E(s(ξ))

}
− E

{
l(ξ)

E(l(ξ))

}
− E

{{
s(ξ)

E(s(ξ))

}2
}

E
{{

l(ξ)
E(l(ξ))

}{
s(ξ)

E(s(ξ))

}}
+ E

{
l(ξ)

E(l(ξ))

}
− E

{
s(ξ)

E(s(ξ))

}
− E

{{
l(ξ)

E(l(ξ))

}2
}

= E(s(ξ))
E(l(ξ)) ·

Cov
{

s(ξ)
E(s(ξ)) , l(ξ)

E(l(ξ))

}
− Var

{
s(ξ)

E(s(ξ))

}
Cov

{
s(ξ)

E(s(ξ)) , l(ξ)
E(l(ξ))

}
− Var

{
l(ξ)

E(l(ξ))

}

= E(s(ξ))
E(l(ξ)) ·

SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} − Corr
{

s(ξ)
E(s(ξ)) , l(ξ)

E(l(ξ))

}
{

SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

}}−1

− Corr
{

s(ξ)
E(s(ξ)) , l(ξ)

E(l(ξ))

} .

Note that to get from step two to three we use the identity E
{

l(ξ)
E(l(ξ))

}
= E

{
s(ξ)

E(s(ξ))

}
= 1.
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To examine the behavior of ρ⋆ to changes in E(s(ξ))
E(l(ξ)) ,

SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} and Corr
{

s(ξ)
E(s(ξ)) , l(ξ)

E(l(ξ))

}
,

we can compute the corresponding partial derivatives:

∂ρ⋆

∂ E(s(ξ))
E(l(ξ))

= E(l(ξ))
E(s(ξ)) ·ρ⋆ =



= 0 if
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} = Corr{·}

> 0 if Corr{·} ≤ 0 ∨
{

Corr{·} > 0 ∧
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} ∈
(
Corr{·}, 1

Corr{·}

)}
< 0 elsewhere.

Note ∂ρ⋆

∂
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} = E(s(ξ))
E(l(ξ)) ·

2·
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

}−

(
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

})2

·Corr{·}−Corr{·}(
1−

SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} ·Corr{·}

)2 , then:

∂ρ⋆

∂
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} =



= 0 if Corr{·} > 0 ∧
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} = 1
Corr{·} ±

√
1

Corr{·}2 − 1

< 0 if Corr{·} > 0 ∧
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} /∈
(

1
Corr{·} −

√
1

Corr{·}2 − 1, 1
Corr{·} +

√
1

Corr{·}2 − 1
)

> 0 elsewhere.

Lastly:

∂ρ⋆

∂Corr{·}
= E(s(ξ))

E(l(ξ)) ·

SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} −
(

SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

})−1

{SD
{

s(ξ)
E(s(ξ))

}
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{

l(ξ)
E(l(ξ))

}}−1
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{

s(ξ)
E(s(ξ)) , l(ξ)

E(l(ξ))

}2



= 0 if
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} = 1

< 0 if
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} < 1

> 0 if
SD
{

s(ξ)
E(s(ξ))

}
SD
{

l(ξ)
E(l(ξ))

} > 1

E Descriptive Statistics
Table 5 provides descriptive statistics for our main variables.
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Table 5: Descriptive statistics

Mean Median S.D. Min3 Max
Individuals (N = 3,278,797 )

Uses long-term care (LTC) (%) 39.8
Passes away (%) 25.3
Recovers from LTC1,2 (%) 53.8
Has multiple LTC spells1 (%) 24.5
Number of LTC spells1 1.3
Observed duration LTC 1 2.3 1.3

Married households (Unbalanced panel; Panel observations= 5,906,251 )
Household income4 (000s euros)

Bottom Lifetime IQ 21.3 21.2 2.2 2.8 41.4
2nd Lifetime IQ 25.8 25.8 2.9 5.7 57.8
3rd Lifetime IQ 31.4 31.4 4.7 6.8 86.1
4th Lifetime IQ 41.1 41.2 7.8 5.9 120.7
Top Lifetime IQ 67.8 61.4 31.8 6.2 1,038.5
All 40.0 33.4 23.2 2.3 1,038.5

Liquid assets (000s euros)
Bottom Lifetime IQ 16.9 8.9 22.3 0.0 336.8
2nd Lifetime IQ 33.6 22.6 39.0 0.0 628.5
3rd Lifetime IQ 53.7 31.3 64.8 0.0 1,056.3
4th Lifetime IQ 85.2 47.6 103.1 0.0 1,753.7
Top Lifetime IQ 396.5 142.3 3,348.3 0.0 156,145.9
All 133.5 37.2 1,630.6 0.0 156,145.9

Single-person households (Unbalanced panel; Panel observations= 8,073,927)
Women (%) 76.6 42.3

Household income (000s euros)
Bottom Lifetime IQ 14.9 14.6 1.6 0.1 35.4
2nd Lifetime IQ 17.9 18.0 2.1 0.7 51.0
3rd Lifetime IQ 21.8 22.1 3.7 0.7 81.8
4th Lifetime IQ 28.0 28.5 6.3 0.8 113.1
Top Lifetime IQ 43.6 40.7 21.7 0.7 926.7
All 23.9 19.6 13.5 0.1 926.7

Liquid assets (000s euros)
Bottom Lifetime IQ 10.6 5.1 14.5 0.0 342.5
2nd Lifetime IQ 25.2 16.5 31.3 0.0 589.0
3rd Lifetime IQ 43.6 24.1 55.7 0.0 935.1
4th Lifetime IQ 74.1 38.3 91.4 0.0 1,638.7
Top Lifetime IQ 330.4 131.8 1,628.4 0.0 101,383.2
All 83.4 21.4 668.5 0.0 101,383.2

IQ = Income Quintile
1Conditional upon using long-term care.
2Recovery: realised transition from LTC to No LTC instead of passing away in LTC.
3: Maximum and minimum are the averages of the one hundred highest and lowest values.
4: Income in 2015 prices. Savings and bonds in 2015 prices, stocks inflated with AEX stock-
index of 31st of December 2014. 51



Table 6: Hazard rate estimates

Transition No LTC → LTC No LTC → Death LTC→No LTC LTC → Death

Constant (βk) -2.938*** -4.564*** -1.626*** -2.498***
(0.014) (0.033) (0.018) (0.022)

Single at baseline (β1kh)
Men - Bottom Lifetime IQ 0 0 0 0

(.) (.) (.) (.)
Men - 2nd Lifetime IQ 0.008 -0.142*** 0.044 -0.031

(0.021) (0.052) (0.027) (0.035)
Men - 3rd Lifetime IQ -0.239*** -0.192*** 0.511*** 0.303***

(0.021) (0.049) (0.027) (0.035)
Men - 4th Lifetime IQ -0.459*** -0.261*** 0.955*** 0.684***

(0.021) (0.047) (0.027) (0.037)
Men - Top Lifetime IQ -0.798*** -0.624*** 1.249*** 0.973***

(0.021) (0.048) (0.027) (0.040)
Women - Bottom Lifetime IQ -0.027* -1.245*** 0.874*** -0.365***

(0.015) (0.041) (0.020) (0.026)
Women - 2nd Lifetime IQ -0.178*** -1.618*** 1.203*** -0.317***

(0.016) (0.049) (0.021) (0.030)
Women - 3rd Lifetime IQ -0.360*** -1.615*** 1.501*** -0.024

(0.017) (0.050) (0.021) (0.033)
Women - 4th Lifetime IQ -0.535*** -1.709*** 1.754*** 0.227***

(0.017) (0.051) (0.022) (0.035)
Women - Top Lifetime IQ -0.723*** -1.988*** 1.952*** 0.499***

(0.018) (0.055) (0.023) (0.038)

Married at baseline - currently single (βk
1kh)

Men - Bottom Lifetime IQ -0.442*** -0.000 1.066*** 0.952***
(0.019) (0.049) (0.026) (0.034)

Men - 2nd Lifetime IQ -0.696*** -0.362*** 1.245*** 1.075***
(0.018) (0.045) (0.024) (0.032)

Men - 3rd Lifetime IQ -0.868*** -0.593*** 1.351*** 1.175***
(0.018) (0.045) (0.024) (0.032)

Men - 4th Lifetime IQ -1.074*** -0.662*** 1.477*** 1.273***
(0.018) (0.045) (0.024) (0.034)

Men - Top Lifetime IQ -1.326*** -0.932*** 1.602*** 1.382***
(0.019) (0.045) (0.025) (0.037)

Women - Bottom Lifetime IQ -0.203*** -1.724*** 1.459*** -0.648***
(0.017) (0.049) (0.022) (0.029)

Women - 2nd Lifetime IQ -0.411*** -1.731*** 1.648*** -0.294***
(0.016) (0.047) (0.021) (0.029)

Women - 3rd Lifetime IQ -0.643*** -1.672*** 1.773*** 0.111***
(0.017) (0.047) (0.021) (0.030)

Women - 4th Lifetime IQ -0.864*** -1.863*** 1.913*** 0.440***
(0.017) (0.049) (0.022) (0.033)

Women - Top Lifetime IQ -1.079*** -2.013*** 2.000*** 0.752***
(0.018) (0.050) (0.023) (0.035)

Married at baseline - currently single (βk
1kh + βk

2kh)
Men - Bottom Lifetime IQ -0.723*** -0.397*** 1.546*** 1.385***

(0.016) (0.038) (0.022) (0.029)
Men - 2nd Lifetime IQ -1.027*** -0.671*** 1.727*** 1.678***

(0.016) (0.037) (0.021) (0.028)
Men - 3rd Lifetime IQ -1.244*** -0.807*** 1.821*** 1.948***

(0.016) (0.036) (0.021) (0.028)
Men - 4th Lifetime IQ -1.448*** -0.958*** 1.910*** 2.165***

(0.016) (0.037) (0.021) (0.029)
Men - Top Lifetime IQ -1.655*** -1.128*** 1.949*** 2.333***

(0.016) (0.037) (0.022) (0.030)
Women - Bottom Lifetime IQ -0.494*** -1.969*** 1.738*** -0.362***

(0.015) (0.043) (0.020) (0.028)
Women - 2nd Lifetime IQ -0.743*** -1.890*** 1.901*** 0.091***

(0.015) (0.040) (0.020) (0.027)
Women - 3rd Lifetime IQ -0.992*** -1.729*** 2.014*** 0.688***

(0.015) (0.040) (0.020) (0.028)
Women - 4th Lifetime IQ -1.231*** -1.808*** 2.115*** 1.117***

(0.016) (0.040) (0.020) (0.029)
Women - Top Lifetime IQ -1.422*** -1.863*** 2.189*** 1.617***

(0.016) (0.040) (0.021) (0.030)

52



Table 6: (continued)

Transition No LTC → LTC No LTC → Death LTC→No LTC LTC → Death

γk 0.076*** 0.137*** -0.028*** 0.075***
(0.001) (0.003) (0.002) (0.002)

Single at baseline (γkh)
Men - Bottom Lifetime IQ 0 0 0 0

(.) (.) (.) (.)
Men - 2nd Lifetime IQ -0.003* -0.012*** 0.007*** 0.005**

(0.002) (0.005) (0.002) (0.002)
Men - 3rd Lifetime IQ 0.007*** -0.020*** -0.009*** -0.005**

(0.002) (0.005) (0.002) (0.002)
Men - 4th Lifetime IQ 0.014*** -0.024*** -0.026*** -0.018***

(0.002) (0.004) (0.002) (0.002)
Men - Top Lifetime IQ 0.026*** -0.016*** -0.027*** -0.027***

(0.002) (0.004) (0.002) (0.002)
Women - Bottom Lifetime IQ 0.003** 0.006* -0.036*** -0.010***

(0.001) (0.003) (0.002) (0.002)
Women - 2nd Lifetime IQ 0.009*** 0.002 -0.043*** -0.012***

(0.001) (0.004) (0.002) (0.002)
Women - 3rd Lifetime IQ 0.015*** -0.001 -0.051*** -0.022***

(0.001) (0.004) (0.002) (0.002)
Women - 4th Lifetime IQ 0.021*** 0.002 -0.055*** -0.027***

(0.001) (0.004) (0.002) (0.002)
Women - Top Lifetime IQ 0.025*** 0.017*** -0.056*** -0.033***

(0.001) (0.004) (0.002) (0.002)

Married at baseline (γkh)
Men - Bottom Lifetime IQ 0.026*** -0.012*** -0.044*** -0.021***

(0.001) (0.003) (0.002) (0.002)
Men - 2nd Lifetime IQ 0.038*** -0.011*** -0.048*** -0.028***

(0.001) (0.003) (0.002) (0.002)
Men - 3rd Lifetime IQ 0.044*** -0.011*** -0.047*** -0.029***

(0.001) (0.003) (0.002) (0.002)
Men - 4th Lifetime IQ 0.048*** -0.010*** -0.043*** -0.029***

(0.001) (0.003) (0.002) (0.002)
Men - Top Lifetime IQ 0.052*** -0.002 -0.039*** -0.028***

(0.001) (0.003) (0.002) (0.002)
Women - Bottom Lifetime IQ 0.014*** 0.019*** -0.063*** -0.003*

(0.001) (0.004) (0.002) (0.002)
Women - 2nd Lifetime IQ 0.025*** 0.001 -0.066*** -0.016***

(0.001) (0.004) (0.002) (0.002)
Women - 3rd Lifetime IQ 0.034*** -0.007** -0.064*** -0.029***

(0.001) (0.004) (0.002) (0.002)
Women - 4th Lifetime IQ 0.041*** -0.000 -0.062*** -0.038***

(0.001) (0.004) (0.002) (0.002)
Women - Top Lifetime IQ 0.046*** 0.012*** -0.057*** -0.043***

(0.001) (0.004) (0.002) (0.002)

Frailty: ln(σ2) -16.369 0.261 -21.026 -2.104

Spells 4,028,551 4,028,551 1,795,027 1,795,027
Uncensored spells 1,425,236 206,997 770,070 622,346
Individuals 3,063,815 3,063,815 1,303,914 1,303,914

Sub-Log-likelihood (cf. (10)) -4,468,814.2 -1,055,077.0 -1,632,120.1 -1,530,497.4
Log-Likelihood -5,523,891.2 -3,162,617.5

Sub-Log-likelihood (σ2 = 0) -4,468,814.2 -1,057,575.3 -1,632,120.1 -1,538,180.9
Log-Likelihood (σ2 = 0) -5,526,389.5 -3,170,301.0
LR test (H0 : σ2 = 0) p > 0.10 p < 0.01 p > 0.10 p < 0.01

Significance levels: * 10-%; **5-%; ***1-%.
IQ = Income Quintile
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F Additional Results

F.1 Life Expectancy and Long-term Care Use over Marital Sta-
tus

Table 7: Remaining Life Expectancy and long-term care use at Age 65 by PI Quintiles

All Bottom Second Third Fourth Top ∆Top -
(a) Men Bottom

LE at age 65 (years)
All 18.0

(17.9;18.1)
15.3

(15.0;15.5)
16.8

(16.6;17.0)
17.6

(17.5;17.8)
18.4

(18.2;18.6)
19.2

(19.1;19.4)
4.0

(3.7;4.2)
Initial Married 18.6

(18.4;18.7)
16.2

(15.9;16.5)
17.4

(17.2;17.6)
18.1

(17.9;18.3)
18.9

(18.7;19.1)
19.5

(19.3;19.8)
3.4

(3.0;3.7)
Initial Singles 16.1

(15.9;16.2)
14.1

(13.8;14.5)
14.7

(14.3;15.1)
15.5

(15.1;15.9)
16.4

(16.0;16.7)
17.9

(17.6;18.3)
3.8

(3.4;4.3)
LTC (years)⋆

All 3.0
(3.0;3.1)

3.8
(3.7;4.0)

3.4
(3.3;3.6)

3.2
(3.1;3.2)

3.0
(2.9;3.0)

2.8
(2.7;2.8)

−1.1
(−1.2;−0.9)

Initial Married 2.9
(2.8;2.9)

3.0
(2.8;3.2)

3.1
(3.0;3.2)

3.0
(2.9;3.1)

2.9
(2.8;3.0)

2.7
(2.6;2.8)

−0.3
(−0.5;−0.1)

Initial Singles 3.7
(3.6;3.8)

4.8
(4.6;5.0)

4.6
(4.4;4.8)

3.8
(3.6;3.9)

3.2
(3.1;3.4)

2.9
(2.8;3.1)

−1.9
(−2.1;−1.6)

Ratio (%)
All 12

(12;12)
20

(19;20)
15

(15;15)
12

(12;13)
11

(10;11)
9

(9;9)
−11

(−11;−10)
Initial Married 10

(9;10)
12

(11;12)
11

(11;11)
10

(10;10)
9

(9;10)
8

(8;9)
−4

(−4;−3)
Initial Singles 20

(20;21)
30

(29;31)
29

(28;30)
22

(21;22)
16

(16;17)
13

(12;13)
−17

(−18;−16)
Ever use LTC (%)

All 77
(76;78)

79
(78;80)

79
(78;80)

78
(77;79)

77
(76;78)

75
(75;76)

−3
(−5;−2)

(b) Women

LE at age 65 (years)
All 21.9

(21.8;22.0)
20.1

(19.9;20.3)
21.8

(21.6;22.0)
22.0

(21.8;22.2)
22.2

(22.1;22.4)
22.3

(22.2;22.5)
2.3

(2.0;2.5)
Initial Married 22.5

(22.3;22.6)
22.1

(21.7;22.4)
22.5

(22.3;22.8)
22.4

(22.2;22.6)
22.6

(22.3;22.8)
22.5

(22.3;22.7)
0.4

(0.0;0.8)
Initial Singles 20.7

(20.6;20.8)
19.1

(18.9;19.3)
20.5

(20.2;20.8)
21.0

(20.8;21.3)
21.4

(21.1;21.7)
21.9

(21.6;22.1)
2.8

(2.4;3.1)
LTC (years)⋆

All 5.1
(5.1;5.2)

6.0
(5.9;6.2)

5.9
(5.8;6.0)

5.3
(5.2;5.4)

4.8
(4.7;4.9)

4.4
(4.3;4.4)

−1.7
(−1.8;−1.5)

Initial Married 5.1
(5.1;5.2)

6.3
(6.1;6.6)

6.0
(5.9;6.2)

5.4
(5.3;5.5)

5.0
(4.8;5.1)

4.4
(4.3;4.6)

−1.9
(−2.1;−1.6)

Initial Singles 5.1
(5.0;5.1)

5.9
(5.8;6.0)

5.6
(5.5;5.8)

5.1
(5.0;5.3)

4.6
(4.4;4.7)

4.1
(3.9;4.2)

−1.8
(−2.0;−1.7)

Ratio (%)
All 18

(18;18)
25

(25;26)
21

(21;22)
18

(18;19)
16

(16;16)
14

(13;14)
−12

(−12;−11)
Initial Married 16

(16;16)
21

(21;22)
20

(19;20)
17

(17;18)
15

(15;16)
13

(13;13)
−8

(−9;−8)
Initial Singles 21

(21;22)
27

(27;28)
24

(24;25)
21

(20;21)
18

(17;18)
15

(15;16)
−12

(−13;−12)
Ever use LTC (%)

All 89
(88;89)

91
(91;92)

91
(91;92)

89
(89;90)

88
(88;89)

86
(85;87)

−5
(−6;−4)

Notes: These are population-averaged measures for the life cycle simulation of 100,000 households. We present the median
estimates across 5,000 bootstrapped samples and the 2.5th and 97.5th percentiles between brackets.
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F.2 Premium Returns
The following tables provide the data to Figures 2 and 4 presented in the main text.

Table 8: Premium returns for different groups (in %)

Income quintile: Bottom Second Third Fourth Top

Household level (ρ∗ = 1.35)
Pension Annuity −8.9

(−9.6;−8.2)
−2.6

(−3.2;−1.9)
−0.6

(−1.1;−0.1)
1.5

(1.0;2.0)
3.6

(3.2;4.0)
LTC insurance 29.9

(27.6;31.9)
17.9

(16.0;19.7)
4.1

(2.7;5.6)
−6.0

(−7.4;−4.7)
−17.0

(−18.2;−15.8)
Life care annuity −1.4

(−2.2;−0.8)
1.4

(0.6;2.0)
0.3

(−0.4;0.9)
0.1

(−0.5;0.7)
−0.3

(−0.7;0.0)

Single Men (ρ∗ = 2.11)
Pension Annuity −12.0

(−13.9;−10.1)
−8.3

(−10.7;−5.9)
−3.3

(−5.5;−1.3)
1.9

(0.1;3.7)
11.8

(10.1;13.4)
LTC insurance 29.8

(24.9;34.8)
28.9

(23.0;34.7)
2.3

(−2.0;6.7)
−13.8

(−17.4;−10.0)
−21.6

(−25.0;−18.3)
Life care annuity 0.0

(−2.0;1.9)
2.4

(−0.3;4.9)
−1.7

(−4.3;0.8)
−2.6

(−4.6;−0.4)
2.2

(0.8;3.8)

Single Women (ρ∗ = 1.47)
Pension Annuity −7.7

(−8.6;−6.8)
−0.7

(−2.0;0.5)
1.7

(0.5;3.0)
3.4

(2.2;4.5)
5.6

(4.5;6.9)
LTC insurance 16.0

(13.8;18.3)
12.5

(9.4;15.6)
1.1

(−1.7;4.0)
−10.7

(−13.2;−8.1)
−20.8

(−23.2;−18.2)
Life care annuity −1.7

(−2.6;−0.9)
2.6

(1.1;4.1)
1.6

(0.1;3.1)
−0.1

(−1.5;1.2)
−1.0

(−1.9;0.1)

Married Men (ρ∗ = 11.16)
Pension Annuity −12.9

(−14.5;−11.4)
−6.2

(−7.3;−5.2)
−2.4

(−3.2;−1.5)
1.7

(0.9;2.4)
5.3

(4.6;6.0)
LTC insurance 4.2

(−1.9;10.1)
8.5

(4.1;12.9)
5.2

(2.0;8.6)
0.1

(−2.7;3.0)
−8.0

(−10.4;−5.3)
Life care annuity −3.1

(−6.5;−0.9)
2.1

(−0.7;4.7)
2.0

(−0.2;4.1)
0.8

(−1.1;2.7)
−2.3

(−3.5;−0.8)

Married women (ρ∗ = 0.08)
Pension Annuity −1.7

(−3.1;−0.4)
0.3

(−0.7;1.3)
−0.3

(−1.1;0.5)
0.4

(−0.3;1.1)
0.0

(−0.6;0.7)
LTC insurance 26.8

(22.1;31.6)
21.1

(17.8;24.3)
7.0

(4.6;9.5)
−3.4

(−5.5;−1.2)
−15.9

(−17.8;−14.0)
Life care annuity −1.3

(−2.6;0.0)
0.6

(−0.2;1.4)
−0.2

(−0.9;0.6)
0.4

(−0.4;1.1)
−0.2

(−0.6;0.3)

Notes: The premium returns are population-averaged measures for the life cycle sim-
ulation of 100, 000 individuals. Medians across 5,000 bootstrapped samples and the
2.5thand 97.5th percentile (in brackets) are shown.
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